Through the development of solid phase microextraction (SPME) technologies, thin film solid phase microextraction (TF-SPME) has been repeatedly validated as a novel sampling device well suited for various applications. These applications, encompassing a wide range of sampling methods such as onsite, in vivo and routine analysis, benefit greatly from the convenience and sensitivity TF-SPME offers. TF-SPME, having both an increased extraction phase volume and surface area to volume ratio compared to conventional microextraction techniques, allows high extraction rates and enhanced capacity, making it a convenient and ideal sampling tool for ultra-trace level analysis. This review provides a comprehensive discussion on the development of TF-SPME and the applications it has provided thus far. Emphasis is given on its application to thermal desorption, with method development and optimization for this desorption method discussed in detail. Moreover, a detailed outlook on the current progress of TF-SPME development and its future is also discussed with emphasis on its applications to environmental, food and fragrance analysis.
Funding informationThe University of Toledo The continued rise in the extraction of unconventional oil and gas across the globe poses many questions about how to manage these relatively new waste-streams.Produced water, the primary waste by-product, contains a diverse number of anthropogenic additives together with the numerous hydrocarbons extracted from the well.Due to potential environmental hazards, it is critical to characterize the chemical composition of this type of waste before proper disposal or remediation/reuse.In this work, a thin film solid phase microextraction approach was developed and optimized to characterize produced water. The thin film device consisted of hydrophilic-lipophilic balance particles embedded in polydimethylsiloxane and immobilized on a carbon mesh surface. These devices were chosen to provide broad extraction coverage and high reusability. Various parameters were evaluated to ensure reproducible results while minimizing analyte loss. This optimized protocol, consisting of a 15 min extraction followed by a short (3 s) rinsing step, enabled the reproducible analysis of produced water without any sample pretreatment. Extraction efficiency was suitable for both produced water additives and hydrocarbons. The developed approach was able to tentatively identify a total of 201 compounds from produced water samples, by using one-dimensional gas chromatography hyphenated to mass spectrometry and data deconvolution.
K E Y W O R D Sdata deconvolution, hydraulic fracturing, thin film solid phase microextraction, unconventional environmental contaminants, untargeted analysis Article Related Abbreviations: AMDIS, automated mass spectral deconvolution and identification system
Per-and polyfluoroalkyl substances (PFAS), an emerging class of toxic anthropogenic chemicals persistent in the environment, are currently regulated at the low part-per-trillion level worldwide in drinking water. Quantification and screening of these compounds currently rely primarily on liquid chromatography hyphenated to mass spectrometry (LC-MS). The growing need for quicker and more robust analysis in routine monitoring has been, in many ways, spearheaded by the advent of direct ambient mass spectrometry (AMS) technologies. Direct analysis in real time (DART), a plasma-based ambient ionization technique that permits rapid automated analysis, effectively ionizes a broad range of compounds, including PFAS. This work evaluates the performance of DART-MS for the screening and quantification of PFAS of different chemical classes, employing a central composite design (CCD) to better understand the interactions of DART parameters on their ionization. Furthermore, in-source fragmentation of the model PFAS was investigated based on the DART parameters evaluated. Preconcentration of PFAS from water samples was achieved by solid phase microextraction (SPME), and extracts were analyzed using the optimized DART-MS conditions, which allowed obtaining linear dynamic ranges (LDRs) within 10 and 5000 ng/L and LOQs of 10, 25, and 50 ng/L for all analytes. Instrumental analysis was achieved in less than 20 s per sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.