This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Niche requirements and habitat resource partitioning by conspecific fishes of different sizes are significant knowledge gaps in the species distribution modelling domain. Management actions and operations are typically concentrated on static habitats, or specific areas of interest, without considering movement patterns of species associated with ontogenetic shifts in habitat usage. Generalized additive models were used to model the body-length-habitat relationships of six fish species. These models were used to identify subsets of environmental parameters that drive and explain the continuous length-habitat relationships for each of the study species, which vary in their degree of ecological and/or commercial importance. Continuous predictive maps of the length distributions for each of the six study species across approximately 200 km of the study area were created from these models. The spatial patterns in habitat partitioning by individuals of different body lengths for all six study species provide strong evidence for ontogenetic shifts. This highlights the importance of considering ontogenetic processes for marine spatial management. Importantly, predictive hotspot maps were created that identify potential areas that accumulate individuals of similar life stages of multiple species (e.g., multispecies nursery areas). In circumstances where limited resources are available for monitoring and management of fish resources, predictive modelling is a valuable tool for studying previously overlooked processes such as ontogenetic habitat shifts. Predictive modelling provides crucial information that elucidates spatial patterns in community composition across mosaics of benthic habitats. This novel technique can contribute to the spatial management of coastal fish and fisheries by identifying areas that are important for different life history stages of multiple fish species.
The distribution and abundance of marine organisms is determined by interactions among numerous abiotic and biotic factors that operate across multiple spatial scales. This study focused on 2 endemic temperate damselfishes Parma microlepis and P. unifasciata, which have a similar ecology but only partially overlapping (~3° of latitude) biogeographical and depth ranges. The synergistic effects of temperature, competition and habitat use on patterns of abundance, distribution and growth were investigated using a combination of mensurative and manipulative field and laboratory experiments. Evidence suggests that the current ranges of both species are driven largely by latitudinal and depth variations in habitat types and not by thermal regimes. P. microlepis was shown to be a slower-growing, long-lived species (to 37 yr) that appears to be specialised in using urchin-grazed barrens. In contrast, P. unifasciata is a shorter-lived species (to 12 yr) and more of a habitat generalist. Where the ranges of these 2 species overlap, competitive interactions appear to drive patterns of habitat use, with P. microlepis potentially excluding P. unifasciata from urchin-grazed barrens habitat. Mesocosm laboratory experiments indicated that the outcome of competitive interactions between these 2 species is temperature-dependent, with P. microlepis dominance increasing at higher temperatures. This study clarifies the important role of habitat in determining latitudinal ranges of these 2 species. It also highlights the need to consider temperature-dependent behavioural interactions to properly understand future potential shifts in species ranges that may result from global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.