Deletions involving regions of chromosome 10 occur in the vast majority (> 90%) of human glioblastoma multiformes. A region at chromosome 10q23-24 was implicated to contain a tumour suppressor gene and the identification of homozygous deletions in four glioma cell lines further refined the location. We have identified a gene, designated MMAC1, that spans these deletions and encodes a widely expressed 5.5-kb mRNA. The predicted MMAC1 protein contains sequence motifs with significant homology to the catalytic domain of protein phosphatases and to the cytoskeletal proteins, tensin and auxilin. MMAC1 coding-region mutations were observed in a number of glioma, prostate, kidney and breast carcinoma cell lines or tumour specimens. Our results identify a strong candidate tumour suppressor gene at chromosome 10q23.3, whose loss of function appears to be associated with the oncogenesis of multiple human cancers.
It is difficult to identify genes that predispose to prostate cancer due to late age at diagnosis, presence of phenocopies within high-risk pedigrees and genetic complexity. A genome-wide scan of large, high-risk pedigrees from Utah has provided evidence for linkage to a locus on chromosome 17p. We carried out positional cloning and mutation screening within the refined interval, identifying a gene, ELAC2, harboring mutations (including a frameshift and a nonconservative missense change) that segregate with prostate cancer in two pedigrees. In addition, two common missense variants in the gene are associated with the occurrence of prostate cancer. ELAC2 is a member of an uncharacterized gene family predicted to encode a metal-dependent hydrolase domain that is conserved among eukaryotes, archaebacteria and eubacteria. The gene product bears amino acid sequence similarity to two better understood protein families, namely the PSO2 (SNM1) DNA interstrand crosslink repair proteins and the 73-kD subunit of mRNA 3' end cleavage and polyadenylation specificity factor (CPSF73).
A vast majority of pharmacological compounds and their metabolites are excreted via the urine, and within the complex structure of the kidney,the proximal tubules are a main target site of nephrotoxic compounds. We used the model nephrotoxicants mercuric chloride, 2-bromoethylamine hydrobromide, hexachlorobutadiene, mitomycin, amphotericin, and puromycin to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. Male Sprague-Dawley rats were dosed via intraperitoneal injection once daily for mercuric chloride and amphotericin (up to 7 doses), while a single dose was given for all other compounds. Animals were exposed to 2 different doses of these compounds and kidney tissues were collected on day 1, 3, and 7 postdosing. Gene expression profiles were generated from kidney RNA using 17K rat cDNA dual dye microarray and analyzed in conjunction with histopathology. Analysis of gene expression profiles showed that the profiles clustered based on similarities in the severity and type of pathology of individual animals. Further, the expression changes were indicative of tubular toxicity showing hallmarks of tubular degeneration/regeneration and necrosis. Use of gene expression data in predicting the type of nephrotoxicity was then tested with a support vector machine (SVM)-based approach. A SVM prediction module was trained using 120 profiles of total profiles divided into four classes based on the severity of pathology and clustering. Although mitomycin C and amphotericin B treatments did not cause toxicity, their expression profiles were included in the SVM prediction module to increase the sample size. Using this classifier, the SVM predicted the type of pathology of 28 test profiles with 100% selectivity and 82% sensitivity. These data indicate that valid predictions could be made based on gene expression changes from a small set of expression profiles. A set of potential biomarkers showing a time- and dose-response with respect to the progression of proximal tubular toxicity were identified. These include several transporters (Slc21a2, Slc15, Slc34a2), Kim 1, IGFbp-1, osteopontin, alpha-fibrinogen, and Gstalpha.
BackgroundThe purpose of the study was to investigate the association between depression and/or depressive symptoms during pregnancy and the risk of an operative delivery or preeclampsia, and to quantify the strength of the association.MethodsA search of the PubMed, SCI/SSCI, Proquest PsycARTICLES and CINAHL databases was supplemented by manual searches of bibliographies of key retrieved articles and review articles. We aimed to include case control or cohort studies that reported data on antenatal depression and /or depressive symptoms and the risk of an operative delivery and/or preeclampsia.ResultsTwelve studies with self-reported screening instruments were eligible for inclusion with a total of 8400 participants. Seven articles that contained 4421 total participants reported the risk for an operative delivery, and five articles that contained 3979 total participants reported the risk for preeclampsia. The pooled analyses showed that both operative delivery and preeclampsia had a statistically significant association with antenatal depressive symptoms (RR = 1.24; 95% CI, 1.14 to 1.35, and OR = 1.63, 95% CI, 1.32 to 2.02, respectively). When the pre-pregnancy body mass indices were controlled in their initial design, the risk for preeclampsia still existed (OR = 1.48, 95% CI, 1.04 to 2.01), while the risk for an operative delivery became uncertain (RR = 1.01, 95% CI, 0.85 to 1.22).ConclusionsAntenatal depressive symptoms are associated with a moderately increased risk of an operative delivery and preeclampsia. An abnormal pre-pregnancy body mass index may modify this association.
Cowden syndrome (CS) is an autosomal dominant disorder associated with the development of hamartomas and benign tumors in a variety of tissues, including the skin, thyroid, breast, endometrium, and brain. It has been suggested that women with CS are at increased risk for breast cancer. A locus for CS was recently defined on chromosome 10 in 12 families, resulting in the identification of the CS critical interval, between the markers D10S215 and D10S541. More recently, affected individuals in four families with CS have been shown to have germ-line mutations in a gene known as "PTEN," or "MMAC1," which is located in the CS critical interval on chromosome 10. In this study, we report three novel MMAC1 mutations in CS and demonstrate that MMAC1 mutations are associated with CS and breast cancer. Furthermore, we also show that certain families and individuals with CS do not have mutations in the coding sequence of MMAC1. Finally, we did not detect MMAC1 mutations in a subpopulation of individuals with early-onset breast cancer, suggesting that germ-line mutations in this gene do not appear to be common in this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.