Based on multi-body dynamics theory and the Lagrange equation, the rigid-flexible coupling dynamical equations of the Coal sampling arm was deduced.The rigid-flexible coupling mode is established by combining with Pro/E, ANSYS and ADAMS, and the model curve is gotten by simulation. The simulation results indicate that rigid-flexible coupling modeling is more actual and it is necessary to consider the flexible deformation of all arms when the sampling arm system is researched. The results in this paper presents the theoretical foundation for the sampling arm dynamical analysis and structure optimization.
Due to the characters of the ultra high pressure vessel employed in food processing, a seal structure was introduced in this study. Then numerical analysis was performed using the larger finite element stress analysis software ansys12.0 for the stresses of the seal structure under internal pressure. In order to solve the contact question of delta-ring seal structure by using face-face contact model, a 3-D axisymmetric solid element was employed to calculate the stresses of the connected location among delta-ring, blind cover and end cylinder, the mises stresses in this structure were analyzed. Thus, the distribution nephograms of the stress on the contact surface were obtained in different conditions. Full-field plastic deformation of seal structure was generated when the inner pressure was larger than 300Mpa. At last, the reason for residual deformation was analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.