Mobile crowdsensing as a novel service schema of the Internet of Things (IoT) provides an innovative way to implement ubiquitous social sensing. How to establish an effective mechanism to improve the participation of sensing users and the authenticity of sensing data, protect the users' data privacy, and prevent malicious users from providing false data are among the urgent problems in mobile crowdsensing services in IoT. These issues raise a gargantuan challenge hindering the further development of mobile crowdsensing. In order to tackle the above issues, in this paper, we propose a reliable hybrid incentive mechanism for enhancing crowdsensing participations by encouraging and stimulating sensing users with both reputation and service returns in mobile crowdsensing tasks. Moreover, we propose a privacy preserving data aggregation scheme, where the mediator and/or sensing users may not be fully trusted. In this scheme, differential privacy mechanism is utilized through allowing different sensing users to add noise data, then employing homomorphic encryption for protecting the sensing data, and finally uploading ciphertext to the mediator, who is able to obtain the collection of ciphertext of the sensing data without actual decryption. Even in the case of partial sensing data leakage, differential privacy mechanism can still ensure the security of the sensing user's privacy. Finally, we introduce a novel secure multiparty auction mechanism based on the auction game theory and secure multiparty computation, which effectively solves the problem of prisoners' dilemma incurred in the sensing data transaction between the service provider and mediator. Security analysis and performance evaluation demonstrate that the proposed scheme is secure and efficient.
The data generated in the Industrial Internet of Things (IIoT) has important research value. In the process of data sharing, data privacy, security, and data availability are important issues that cannot be ignored. This paper proposes a blockchain privacy protection scheme based on zero-knowledge proof to realize the secure sharing of data among data owners, cloud service providers, and semitrusted cloud servers. First, the method of combining zero-knowledge proof and smart contract is used to verify the availability of data between the data owner and the cloud service provider under the premise of protecting data privacy. Second, proxy reencryption technology is used to realize the secure sharing of data among authorized cloud service providers. In addition, data sharing transaction information between multiple parties and data hashes with digital signatures are stored on the blockchain to achieve public and verifiable data sharing information and data validity. Finally, the theoretical analysis of the scheme shows that the scheme meets the confidentiality requirements of security, integrity, and validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.