Bioadhesives are used for tissue adhesion and hemostasis in surgery. A gelatin-resorcinol mixture crosslinked with formaldehyde (GRF glue) and/or glutaraldehyde (GRG) is used for this purpose. Although the bonding strength of the GRF glue to tissue is satisfactory, concerns about the cytotoxicity of formaldehyde are reported in the literature. It was suggested that the cytotoxicity problem of the GRF glue may be overcome by changing its crosslinking method. The study was therefore undertaken to assess the feasibility of using an epoxy compound (GRE glue), a water-soluble carbodiimide (GAC glue), or genipin (GG glue) to crosslink with a gelatin hydrogel as new bioadhesives. GRF glue and GRG glue were used as controls. The results of our cytotoxicity study suggested that the cellular compatibility of the GAC and GG glues was superior to the GRF, GRG, and GRE glues. The gelation time for the GG glue was relatively longer than the GRF and GRG glues, while no gelation time could be determined for the GAC glue. Additionally, it took approximately 17 h for the GRE glue to become adhesive. The GRF and GRG glues had the greatest bonding strengths to tissue among all test adhesives, while the bonding strengths of the GAC and GG glues were comparable. In contrast, there was almost no bonding strength to tissue for the GRE glue. However, the GRF and GRG glues were less flexible than the GAC and GG glues. Subsequent to the bonding strength measurement, each test adhesive was found to adhere firmly to the tissue surface and underwent cohesive failure during the bond breaking. In conclusion, the GRF and GRG glues may be used as tissue adhesives when their ability to bind tissue rapidly and tightly is required; the GAC and GG glues are preferable when the adhesive action must be accompanied with minimal cytotoxicity and stiffness; and the GRE glue is not suitable for bioadhesion in clinical applications
The objective of the present study was to evaluate in vitro, using Chinese hamster ovary (CHO-K1) cells, the genotoxicity of genipin, a naturally occurring crosslinking agent. Glutaraldehyde, the most commonly used crosslinking agent for biologic tissue fixation, was employed as a reference chemical. The selected procedures for this evaluation were the micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix). Before starting the genotoxicity assays, the maximum noncytotoxic amounts of glutaraldehyde and genipin were determined using the MTT assay. The results obtained in the MTT assay revealed that the cytotoxicity of genipin was significantly lower than that of glutaraldehyde with or without S9 mix. The frequencies of MN observed in the cases drugged with varying concentrations of glutaraldehyde or genipin were not statistically different from those seen in the negative controls (blank) in the presence or absence of S9 mix. However, it was noted that glutaraldehyde significantly inhibited the cell-cycle progression while the cells drugged with genipin did not result in cell-cycle delay. In the SCE assay, the numbers of SCE per cell observed in the cases drugged with varying concentrations of glutaraldehyde were significantly greater than those found in the negative controls with or without S9 mix. Nevertheless, these numbers were still low compared to the numbers of SCE induced by the strong mutagens used as our positive control substances. This suggests that glutaraldehyde may produce a weakly clastogenic response in CHO-K1 cells. In contrast, the numbers of SCE per cell obtained in the cases drugged with genipin were comparable to those observed in the negative controls in those that were except drugged with the highest dose (50 ppm). This suggests that genipin does not cause clastogenic response in CHO-K1 cells provided its concentration is lower than 50 ppm. In conclusion, as far as cytotoxicity and genotoxicity are concerned, genipin is a promising crosslinking agent for biologic tissue fixation.
The study was to evaluate the characteristics of a chitosan membrane cross-linked with a naturally-occurring cross-linking reagent, genipin. This newly-developed genipin-cross-linked chitosan membrane may be used as an implantable drug-delivery system. The chitosan membrane without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan membrane were used as controls. The characteristics of test chitosan membranes evaluated were their cross-linking degree, swelling ratio, mechanical properties. antimicrobial activity, cytotoxicity, and degradability. It was found that cross-linking of chitosan membrane using genipin increased its ultimate tensile strength but significantly reduced its strain-at-fracture and swelling ratio. There was no significant difference in antimicrobial activity between the genipin-cross-linked chitosan membrane and its fresh counterpart. Additionally, the results showed that the genipin-cross-linked chitosan membrane had a significantly less cytotoxicity and a slower degradation rate compared to the glutaraldehyde-cross-linked membrane. These results suggested that the genipin-cross-linked chitosan membrane may be a promising carrier for fabricating an implantable drug-delivery system. The drug-release characteristics of the genipin-cross-linked chitosan membrane are currently under investigation.
Bioadhesives are used for tissue adhesion and hemostasis in surgery. A gelatin-resorcinol mixture crosslinked with formaldehyde (GRF glue) and/or glutaraldehyde (GRG) is used for this purpose. Although the bonding strength of the GRF glue to tissue is satisfactory, concerns about the cytotoxicity of formaldehyde are reported in the literature. It was suggested that the cytotoxicity problem of the GRF glue may be overcome by changing its crosslinking method. The study was therefore undertaken to assess the feasibility of using an epoxy compound (GRE glue), a water-soluble carbodiimide (GAC glue), or genipin (GG glue) to crosslink with a gelatin hydrogel as new bioadhesives. GRF glue and GRG glue were used as controls. The results of our cytotoxicity study suggested that the cellular compatibility of the GAC and GG glues was superior to the GRF, GRG, and GRE glues. The gelation time for the GG glue was relatively longer than the GRF and GRG glues, while no gelation time could be determined for the GAC glue. Additionally, it took approximately 17 h for the GRE glue to become adhesive. The GRF and GRG glues had the greatest bonding strengths to tissue among all test adhesives, while the bonding strengths of the GAC and GG glues were comparable. In contrast, there was almost no bonding strength to tissue for the GRE glue. However, the GRF and GRG glues were less flexible than the GAC and GG glues. Subsequent to the bonding strength measurement, each test adhesive was found to adhere firmly to the tissue surface and underwent cohesive failure during the bond breaking. In conclusion, the GRF and GRG glues may be used as tissue adhesives when their ability to bind tissue rapidly and tightly is required; the GAC and GG glues are preferable when the adhesive action must be accompanied with minimal cytotoxicity and stiffness; and the GRE glue is not suitable for bioadhesion in clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.