An unhealthy diet has been linked to increased incidence of chronic diseases. To investigate the relationship between diet and intestinal inflammation, mice in two experimental groups were fed on a high-fat diet or high-fructose diet, respectively. The result showed that the defecation volume of the experimental groups was significantly reduced compared with that of the control group, and the levels of pro-inflammatory cytokines (interleukin (IL)-1β and IL-6) and IgG in serum were increased significantly. In addition, inflammatory cell infiltration was observed in intestinal tissue, indicating that a high-fructose or high-fat diet can lead to constipation and inflammation. Further analysis showed that the microbial composition of the experimental groups changed significantly, including a decrease of the Bacteroidetes/Firmicutes ratio and increased levels of Bacteroides, Akkermansia, Lactobacillus, and Ruminococcus, which might be associated with inflammation. The results of pro-inflammatory metabolites analysis showed that the levels of arachidonic acid, stearic acid, and indoxylsulfuric acid were significantly increased in the experimental groups, which were related significantly to Bacteroides, Enterococcus, and Akkermansia. Meanwhile, the content of 5-hydroxytryptamine (5-HT) was significantly decreased, which might cause constipation by reducing intestinal peristalsis. Moreover, transplantation of fecal bacteria from inflammatory mice caused constipation and inflammation in normal mice, which could be relieved by feeding a normal diet. The results of the present study indicated that changes in intestinal microbiota and microbial metabolites may underlie chronic intestinal inflammation and constipation caused by high-fructose and high-fat diets.
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria , and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Lutein supplements are often used to pigment and enrich layer chicken eggs. This experiment was conduced to compare the bioavailability of free and esterified lutein, by depletion method. Forty chickens were randomly divided into two groups. After 2 weeks of washout period, when all birds were fed the same low lutein basal diet, the two groups were fed for another 2 weeks with diets supplemented with free lutein or esterified lutein. Two experimental diets were supplemented with the same amount of 15 mg lutein/kg. On day 0 (baseline) and days 3, 7, and 14, birds fasting morning plasma samples were collected and stored for lutein analysis by high performance liquid chromatography method (HPLC). Results showed that: 1) Plasma lutein concentration increased dramatically after feeding free or esterified lutein; 2) Plasma lutein level in birds fed the diet supplemented with free lutein significantly differed from those fed esterified lutein on day 3. 3) There were no significant differences in plasma lutein levels between free lutein and esterified lutein on days 7 and 14. In conclusion, the lutein bioavailability from free lutein or esterified lutein supplements was comparable.
1. The study was conducted to evaluate the effects of a dried Bacillus subtilis culture (DBSC) on growth performance and nutrient retention of goslings. 2. A total of 240 goslings were randomly divided into 4 dietary treatments with 6 replicates of 10 goslings per pen from 0 to 4 weeks of age. The 4 treatments consisted of a basal diet containing neither antibiotics nor DBSC (control), basal diet supplemented 5 mg Flavomycin/kg, and basal diet supplemented with 250 or 500 mg DBSC/kg. 3. Body weight and feed consumption were measured with pen as the experimental unit at 14 and 28 d of age, and excreta collections from each pen were carried out to determine nutrient retention ratio during the 4th week. 4. The results showed that the diet supplemented with 250 mg DBSC/kg increased average daily gain (ADG) by 6.9%, reduced average daily feed intake (ADFI) by 3.9%, and improved feed conversion ratio (FCR) by 10.3% in a 0-28 d feeding period, compared with the control diet. However, the diet containing 500 mg DBSC/kg did not effect these performance of goslings. 5. The goslings given the diet with 250 mg DBSC/kg had similar ADG, lower ADFI and significantly lower FCR to or than the goslings fed on the Flavomycin diet. 6. The results also showed that dietary DBSC supplementation improved dry matter and energy retention of goslings. 7. This study indicated that the diet containing a dried B. subtilis culture at 250 mg/kg offered large benefits to the growth performance of goslings, and these benefits could equal or exceed those from Flavomycin. It is suggested that the growth promoting effect of DBSC may be attributed to the improvement in the availability of dietary nutrients.
Fast food is becoming increasing popular as a social phenomenon, and it usually contains high fat contents. Matcha is one versatile tea, and its application in food brings lots of new consumers. Herein, a high-fat diet containing matcha was prepared, and in this study we investigated the effects of such a diet on lipid metabolism and intestinal flora of normal and diabetic mice. Results showed that diabetes had significant weight loss, hyperphagia, hyperlipidemia and intestinal flora disturbance, with particularly significantly increased Alistipes, Prevotella, Helicobacter, Acetatifactor and Bacteroides, and decreased Alloprevotella, Lactobacillus, Allobaculum and Akkermansia. In diabetes, matcha decreased serum triglyceride and LDL-C, increased HDL-C, reversed those bacteria trends besides Alistipes, Prevotella and Akkermansia. In normal mice, matcha decreased serum LDL-C, increased Parabacteroides, Bacteroidales_unclassified, Erysipelotrichaceae_unclassified and Barnesiella, Lachnospiraceae_unclassified, and decreased Helicobacter and Clostridium XlVa. Most importantly, matcha increased Porphyromonadaceae_unclassified, Lactobacillus, Alloprevotella, Prevotella and Allobaculum; and decreased Bacteroides and Enterobacteriaceae_unclassified in diabetes, however these changed bacteria in normal mice showed an opposite trend from diabetes. Intestinal flora balance is vital important to host, matcha helps to improve the balance of lipid metabolism and intestinal flora according to different character of host, and is a valuable addition to develop functional food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.