A circular non-Newtonian fluid model associated with the limiting shear strength was considered. Using this model a modified Reynolds equation was developed which is almost the same as the classical Reynolds equation except for the viscosity term. Results show that the calculation of the central and minimum film thicknesses from the classical Reynolds equation is still valid for pure rolling conditions. The effects on performance of dimensionless load parameter, dimensionless speed parameter, slide/roll ratio, different oils, the limiting shear strength proportionality constant were studied. Such parameters as the pressure profile, the film shape, the coefficient of friction, the dimensionless shear stress at surface a, and the velocitiy contour in the conjunction were considered.
One of the most time-consuming routines in thermal EHL problem is the calculation of the surface temperature integral. Combining the multigrid technique and the Newton-Raphson method, a modified multilevel, multi-integration algorithm for this integral is developed that can reduce the computational complexity from O (n2) to O (n ln n) for the thermal EHL problem of rolling/sliding line contacts. The employed standard central difference approximation to the coupled Reynolds and energy equations can yield the maximum difference of mass flow flux within one percent. Effects of dimensionless load, dimensionless materials parameter, slip ratio, and thermal loading parameter on the minimum film thickness are investigated. Correlation formula of thermal reduction factor for the minimum film thickness is derived for a wide range of slip ratios, loads, thermal loading parameters, and materials parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.