Gamma-secretase is a member of an unusual class of proteases with intramembrane catalytic sites. This enzyme cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin (PS) composed of its N- and C-terminal fragments (PS-NTF/CTF), a mature glycosylated form of nicastrin (NCT), Aph-1, and Pen-2. Recent data from studies in Drosophila, mammalian, and yeast cells suggest that PS, NCT, Aph-1, and Pen-2 are necessary and sufficient to reconstitute gamma-secretase activity. However, many unresolved issues, in particular the possibility of other structural or regulatory components, would be resolved by actually purifying the enzyme. Here, we report a detailed, multistep purification procedure for active gamma-secretase and an initial characterization of the purified protease. Extensive mass spectrometry of the purified proteins strongly suggests that PS-NTF/CTF, mNCT, Aph-1, and Pen-2 are the components of active gamma-secretase. Using the purified gamma-secretase, we describe factors that modulate the production of specific Abeta species: (1) phosphatidylcholine and sphingomyelin dramatically improve activity without changing cleavage specificity within an APP substrate; (2) increasing CHAPSO concentrations from 0.1 to 0.25% yields a approximately 100% increase in Abeta42 production; (3) exposure of an APP-based recombinant substrate to 0.5% SDS modulates cleavage specificity from a disease-mimicking pattern (high Abeta42/43) to a physiological pattern (high Abeta40); and (4) sulindac sulfide directly and preferentially decreases Abeta42 cleavage within the purified complex. Taken together, our results define a procedure for purifying active gamma-secretase and suggest that the lipid-mediated conformation of both enzyme and substrate regulate the production of the potentially neurotoxic Abeta42 and Abeta43 peptides.
Nedd8 activates ubiquitination by increasing the efficiency of polyubiquitin chain assembly through its covalent conjugation to cullin molecules. Here we report the isolation, cloning, and characterization of a novel human Nedd8-specific protease called DEN1. Human DEN1 is encoded by AAH31411.1, a previously uncharacterized protein of 212 amino acids that shares homology with the Ulp1 cysteinyl SUMO deconjugating enzyme family. Recombinant human DEN1, purified from bacteria, selectively binds to Nedd8 and hydrolyzes Cterminal derivatives of Nedd8. Interestingly, DEN1 deconjugates cullin 1 (CUL1)-Nedd8 in a concentration-dependent manner. At a low concentration, DEN1 processes hyper-neddylated CUL1 to yield a mononeddylated form, which presumably contains the Lys-720 CUL1 -Nedd8 linkage. At elevated concentrations, DEN1 is able to complete the removal of Nedd8 from CUL1. These activities distinguish DEN1 from the COP9 signalosome, which is capable of efficiently cleaving the Lys-720 CUL1 -Nedd8 conjugate, but lacks Nedd8 Cterminal hydrolytic activity and poorly processes hyperneddylated CUL1. These results suggest a unique role for DEN1 in regulating the modification of cullins by Nedd8.Nedd8 is a small ubiquitin (Ub) 1 -like protein that plays a critical regulatory role in cell proliferation and development. In fission yeast, Nedd8 is essential for cell viability (1). In animals, Nedd8 is required for development as inactivation of the Nedd8 pathway in either mouse (2) or Drosophila (3) results in embryonic lethality. The critical biological function of Nedd8 is conferred by its biochemical activity as a protein modifier, being covalently attached to nearly all members of the cullin family (4). This modification, neddylation, is reminiscent of the ubiquitination reaction. Neddylation occurs by the formation of an isopeptide-bond linking the ⑀-amino group of a conserved lysine residue typically within the C terminus of a cullin to the carboxyl-end of Nedd8 Gly-76 (5). The enzyme components of the neddylation reaction include a Nedd8-specific E1 activating enzyme comprised of the APP-BP1/Uba3 heterodimer, an E2 conjugating enzyme known as Ubc12 (6), and the ROC1/Rbx1 RING finger protein (7).Using in vitro systems, several studies have shown that Nedd8 activates the ubiquitination of IB␣ (8) or p27 (9), through its conjugation to cullin 1 (CUL1). These reactions are mediated by SCF E3 Ub ligases, in which CUL1 functions as a molecular scaffold (10 -12). Subsequently, it was observed that degradation of HIF-␣ by von Hippel-Lindau tumor suppressor required Nedd8 (13). In this case, Nedd8 was conjugated to CUL2 that assembles the von Hippel-Lindau protein E3 Ub ligase (reviewed in Ref. 14). These studies thus suggest a role for Nedd8 in the assembly of an active cullin-based E3 Ub ligase.We initially reported that conjugation of Nedd8 to CUL1 increases the ability of ROC1-CUL1, a sub-complex within the SCF E3 Ub ligase, to assemble polyubiquitin chains in a reaction catalyzed by the Cdc34 E2 conjugating enzyme (15). S...
The genetic lesion underlying familial British dementia (FBD), an autosomal dominant neurodegenerative disorder, is a T-A transversion at the termination codon of the BRI gene. The mutant gene encodes BRI-L, the precursor of ABri peptides that accumulate in amyloid deposits in FBD brain. We now report that both BRI-L and its wild-type counterpart, BRI, were constitutively processed by the proprotein convertase, furin, resulting in the secretion of carboxyl-terminal peptides that encompass all or part of ABri. Elevated levels of peptides were generated from the mutant BRI precursor. Electron microscopic studies revealed that synthetic ABri peptides assembled into irregular, short fibrils. Collectively, our results support the view that enhanced furin-mediated processing of mutant BRI generates fibrillogenic peptides that initiate the pathogenesis of FBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.