Colon cancer is a prevalent malignancy affecting the gastrointestinal tract. Oridonin (ORI) is a promising chemotherapeutic drug used in the treatment of colon cancer. In this study, we examined the anticancer activity of ORI against colon cancer and elucidated the underlying molecular mechanisms. Cell counting kit-8, flow cytometric and western blot analyses were conducted to analyze the growth inhibitory effects of ORI on SW620 cells; we employed BMP7 and p53 recombinant adenovirus to detect the influence of ORI on the p38 MAPK signal pathway; PT-qPCR, cell immunofluorescence staining and western blot analysis were used to detect the expression of BMP7, p38 and p-p38, p53 and p-p53. A xenograft tumor model and histological evaluation were introduced to detect the effects of ORI and BMP7 in SW620 cells in vivo. ORI inhibited the proliferation of SW620 cells and induced apoptosis. ORI also increased the total and phosphorylated levels of p53. The overexpression of p53 was found to enhance the anti-proliferative effects of ORI on the SW620 cells, while the inhibition of p53 partially reversed these effects. ORI increased the expression of bone morphogenetic protein 7 (BMP7) in the SW620 cells. The overexpression of BMP7 also enhanced the antiproliferative effects of ORI on the SW620 cells and reduced the growth rate of tumors in mice. BMP7-induced immunosuppression markedly decreased the anti-proliferative effects of ORI. ORI was not found to exert any substantial effect on the phosphorylation levels of Smad1/5/8, although it increased the level of p-p38 significantly. The inhibition of p38 significantly attenuated the ORI-induced increase in the levels of p-p53. The overexpression of BMP7 enhanced the promoting effects of ORI on the p-p53 and p-p38 levels, while BMP7-induced immunosuppression reduced the effects of ORI on p-p38 and p-p53. On the whole, the findings of this study suggest that ORI may be a promising agent for use in the treatment of colon cancer, and the anticancer effects of ORI may be partially mediated through the BMP7/p38 MAPK/p53 signaling pathway.
The diagnosis and treatment for colon cancer have been greatly developed, but the prognosis remains unsatisfactory. There is still a great clinical need to explore new efficacious drugs for colon cancer treatment. Tetrandrine (Tet) is a bis-benzylisoquinoline alkaloid. It has been shown that Tet may be a potential candidate for cancer treatment, but the explicit mechanism underlying this activity remains unclear. In this study, we investigated the anticancer activity of Tet in human colon cancer cells and dissected the possible mechanism. With cell viability assay and flow cytometry analysis, we confirmed that Tet can effectively inhibit the proliferation and induce apoptosis in HCT116 cells. Mechanically, we found that Tet greatly increases the mRNA and protein level of TGF-β1 in HCT116 cells. Exogenous TGF-β1 enhances the anti-proliferation and apoptosis inducing effect of Tet in HCT116 cells, which has been partly reversed by TGF-β1 inhibitor. Tet decreases the phosphorylation of Akt1/2/3 in HCT116 cells. This effect can be enhanced by exogenous TGF-β1, but partly reversed by TGF-β1 inhibitor. Tet exhibits no effect on total level of PTEN, but decreases the phosphorylation of PTEN; exogenous TGF-β1 enhances the effect of Tet on decreasing the phosphorylation of PTEN, which was partly reversed by TGF-β1 inhibitor. Our findings suggested that Tet may be a promising candidate for colon cancer treatment, and the anticancer activity may be mediated by inactivating PI3K/Akt signaling through upregulating TGF-β1 to decrease the phosphorylation of PTEN.
Colorectal cancer (CRC) is the second leading cause of cancer death. Hence, there is a great need to explore new efficacious drugs for the treatment of CRC. Honokiol (HNK), a natural product extracted from magnolia bark, processes various biological activities, including anticancer. In this study, we introduced cell viability assay, western blotting, real-time PCR and immunofluorescent staining to determine the anticancer effect of HNK, and the possible mechanism underlying this biological process. We found that HNK can inhibit the proliferation and induce apoptosis in HCT116 cells in a concentration- and time-dependent manner. HNK activates p53 in HCT116 and other colon cancer cells. Exogenous p53 potentiates the anticancer of HNK, while p53 inhibitor decreases this effect of HNK. Moreover, HNK upregulates the expression of bone morphogenetic protein 7 (BMP7) in colon cancer cells; Exogenous BMP7 enhances the anticancer activity of HNK and BMP7 specific antibody reduces this effect of HNK. For mechanism, we found that HNK cannot increase the level of Smad1/5/8; Exogenous BMP7 potentiates the HNK-induced activation of p53. On the contrary, BMP7 specific antibody inhibits the HNK-induced activation of p53 in colon cancer cells and partly decreases the total level of p53. Our findings suggested that HNK may be a promising anticancer drug for CRC; activation of p53 plays an important role in the anticancer activity of HNK, which may be initialized partly by the HNK-induced upregulation of BMP7.
Objectives TNBG‐5602 is a newly synthesized compound with an isoquinoline structure. In the present study, we demonstrated the anticancer effect of TNBG‐5602 in in‐vitro and in‐vivo models and investigated its possible anticancer mechanism. Methods The antiproliferation effect of TNBG‐5602 in vitro was evaluated in human liver cancer cell line QGY‐7701. The acute toxicity of TNBG‐5602 was evaluated in mice. The anticancer activity of TNBG‐5602 in vivo was assessed in a xenograft model of human liver cancer cell line QGY‐7701. Key findings The results of CCK‐8 assay showed that TNBG‐5602 can effectively inhibit the proliferation of liver cancer cells in vitro. The acute toxicity test in mice showed that the LD50 of TNBG‐5602 was 172 mg/kg. In a xenograft liver cancer model, TNBG‐5602 could remarkably inhibit the growth of tumours. During in‐vitro and in‐vivo studies, we noted that TNBG‐5602 could induce lipid accumulation in cancer cells and tissues. Further study indicated that the anticancer effect of TNBG‐5602 may be exerted through activating peroxisome proliferator‐activated receptor γ (PPARγ) and downregulating proliferating cell nuclear antigen (PCNA). Conclusions Our results suggested that TNBG‐5602 might exert potent anticancer activity through increasing the expression of PPARγ.
Pioglitazone/metformin adduct is a novel compound synthesized from pioglitazone and metformin combined at a molar mass ratio of 1:1. The aim of this study was to investigate the effects of pioglitazone/metformin adduct on high glucose-induced insulin secretion and apoptosis in INS-1 cells. Western blot and CCK8 analyses showed that the death rate of INS-1 cells increased in response to glucose treatment in a concentration-dependent manner. ELISA assays and Western blot analyses showed that insulin secretion peaked following treatment with glucose concentration at 33.33 mM. Treatment of INS-1 cells with 1 μM pioglitazone/metformin adduct in the presence of 33.33 mM glucose greatly improveded the levels of insulin and apoptosis rates compared to those of the control group. Analysis of mechanism underlying these effects revealed the involvement of the p21-p53-MDM2 signaling pathway. Our results indicate that pioglitazone/metformin adduct is superior to pioglitazone and/or metformin in regulating high glucose-induced insulin secretion and apoptosis in INS-1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.