HighlightA brown planthopper resistance recessive gene, BPH29, was cloned which contained a B3 DNA-binding domain and conferred resistance by a mechanism that was similar to plant defence against pathogens.
OsABCG36 localized at the plasma membrane functions as an efflux transporter for Cd or Cd conjugates in the roots, and is involved in Cd tolerance in rice.
BackgroundRice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. However, common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. To better understand the molecular mechanisms underlying chilling tolerance in wild rice, iTRAQ-based proteomic analysis was performed to examine CTS-12, a major chilling tolerance QTL derived from common wild rice, mediated chilling and recovery-induced differentially expressed proteins (DEPs) between the chilling-tolerant rice line DC90 and the chilling-sensitive 9311.ResultsComparative analysis identified 206 and 155 DEPs in 9311 and DC90, respectively, in response to the whole period of chilling and recovery. These DEPs were clustered into 6 functional groups in 9311 and 4 in DC90. The majority were enriched in the ‘structural constituent of ribosome’, ‘protein-chromophore linkage’, and ‘photosynthesis and light harvesting’ categories. Short Time-series Expression Miner (STEM) analysis revealed distinct dynamic responses of both chloroplast photosynthetic and ribosomal proteins between 9311 and DC90.ConclusionCTS-12 might mediate the dynamic response of chloroplast photosynthetic and ribosomal proteins in DC90 under chilling (cold acclimation) and recovery (de-acclimation) and thereby enhancing the chilling stress tolerance of this rice line. The identified DEPs and the involvement of CTS-12 in mediating the dynamic response of DC90 at the proteomic level illuminate and deepen the understanding of the mechanisms that underlie chilling stress tolerance in wild rice.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1381-7) contains supplementary material, which is available to authorized users.
As organelles for photosynthesis in green plants, chloroplasts play a vital role in solar energy capture and carbon fixation. The maintenance of normal chloroplast physiological functions is essential for plant growth and development. Low temperature is an adverse environmental stress that affects crop productivity. Low temperature severely affects the growth and development of plants, especially photosynthesis. To date, many studies have reported that chloroplasts are not only just organelles of photosynthesis. Chloroplasts can also perceive chilling stress signals via membranes and photoreceptors, and they maintain their homeostasis and promote photosynthesis by regulating the state of lipid membranes, the abundance of photosynthesis-related proteins, the activity of enzymes, the redox state, and the balance of hormones and by releasing retrograde signals, thus improving plant resistance to low temperatures. This review focused on the potential functions of chloroplasts in fine tuning photosynthesis processes under low-temperature stress by perceiving stress signals, modulating the expression of photosynthesis-related genes, and scavenging excess reactive oxygen species (ROS) in chloroplasts to survive the adverse environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.