The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V , pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V . The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment.
Quinoline is widely used in the production of drugs as a highly effective insecticide, and its derivatives can also be used to produce dyes. It has a teratogenic carcinogen to wildlife and humans once entering into the aquatic environment. In this study, the degradation mechanism of quinoline in drinking water by a strong ionization dielectric barrier discharge (DBD) low-temperature plasma with large volume was explored. High concentration of hydroxyl radical (·OH) (0.74 mmol l−1) and ozone (O3) (58.2 mg l−1) produced by strongly ionized discharge DBD system were quantitatively analyzed based on the results of electron spin resonance and O3 measurements. The influencing reaction conditions of input voltages, initial pH value, ·OH inhibitors, initial concentration and inorganic ions on the removal efficiency of quinoline were systematically studied. The obtained results showed that the removal efficiency and TOC removal of quinoline achieved 94.8% and 32.2%, degradation kinetic constant was 0.050 min−1 at 3.8 kV and in a neutral pH (7.2). The proposed pathways of quinoline were suggested based on identified intermediates as hydroxy pyridine, fumaric acid, oxalic acid, and other small molecular acids by high-performance liquid chromatography/tandem mass spectrometry analysis. Moreover, the toxicity analysis on the intermediates demonstrated that its acute toxicity, bioaccumulation factor and mutagenicity were reduced. The overall findings provided theoretical and experimental basis for the application of a high capacity strong ionization DBD water treatment system in the removal of quinoline from drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.