The climate is a significant factor affecting the collapsing gully in weathered granite areas, and most of the surface layers of the collapsed area comprise granite residual soil. Granite residual soil has complex disintegration characteristics under different initial water content conditions. Besides, its disintegration characteristic is an essential factor for collapsing gully. Therefore, disintegration tests, triaxial shear tests, nuclear magnetic resonance tests, and hydraulic conductivity tests are conducted under torridity and rainstorm conditions in order to study the disintegration characteristics of granite residual soil. The results of disintegration test showed that the initial disintegration rate of granite residual soil increased rapidly with the decrease in water content, while the relationship between disintegration rate and water content in the later stage of disintegration is unclear. When soaked, the maximum decrease in cohesion was 44.48%, the hydraulic conductivity became six times larger, and the amplitude of the T2 curve increased by about 40%, which reduced the strength of the soil and provided better access for rainwater infiltration to deeper stratum. The results show that the microstructure of granite residual soil would be damaged and the disintegration would occur after a rainstorm at low water content. Micropores would be formed inside the sample after soaking, resulting in destroying the continuity of the material.
Granite residual soil is one of the most frequently encountered problem soils in tropical regions, whose mechanical behavior heavily depends on the pattern of variation of mean effective stress (p’) during shearing, which can be classified into three categories: increasing-p’, constant-p’, and decreasing-p’. Unfortunately, so far, the stress–strain strength characteristics of granite residual soils have been studied mainly under increasing-p’ stress paths, although it is very likely to encounter stress paths with decreasing p’ in practice, especially in excavation engineering. Moreover, most pertinent research has focused on remolded granite residual soils, whereas undisturbed specimens have not yet received enough attention. In this paper, stress path triaxial tests considering different patterns of variation of mean effective stress were conducted on an undisturbed granite residual soil. Subsequently, a variable termed loading angle was introduced to quantitatively represent stress path. The influences of stress path on the Mohr–Coulomb strength parameters, deformation characteristics, ductility, and shearing stiffness were analyzed, with an emphasis on the role of pattern of variation of mean effective stress. The experimental results show that friction angle of the soil increases while cohesion decreases with the increase in loading angle. The increase in loading angle leads to less volume contraction and smaller failure strain. During shearing, the soil exhibited a less brittle response under stress paths with smaller loading angles. The initial secant shear modulus first decreased and then increased as the loading angle increased, with the minimum shearing stiffness occurring at a certain loading angle lying between 90° and 123.7°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.