Ferroelectric nanowires have attracted great attention due to their excellent physical properties. We report the domain structure, ferroelectric, piezoelectric, and conductive properties of bismuth ferrite (BFO, short for BiFeO3) nanowires characterized by scanning probe microscopy (SPM). The X-ray diffraction (XRD) pattern presents single phase BFO without other obvious impurities. The piezoresponse force microscopy (PFM) results indicate that the nanowires possess a multidomain configuration, and the maximum piezoelectric coefficient (d33) of single BFO nanowire is 22.21 pm/V. Poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) demonstrate that there is sufficient polarization switching behavior and obvious piezoelectric properties in BFO nanowires. The conducting atomic force microscopy (C-AFM) results show that the current is just hundreds of pA at 8 V. These lay the foundation for the application of BFO nanowires in nanodevices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.