Mn2+ activated glass‐ceramic (GC) has received tremendous attention in the exploration of luminescent materials for solid‐state lighting due to the high stability, broad red emission, and low toxicity. However, the doped Mn2+ ions still suffer from the oxidation and uncontrollable ions migration during the melting process of conventional preparation techniques, which is detrimental to the luminescence performance. Herein, transparent Mn2+‐doped mullite GCs have been prepared at low temperature (∼850°C) via the spark plasma sintering of EMT‐type zeolite. The GC samples show typical red emission peaking at 620 nm that can be assigned to spin‐forbidden 4T1(G)→6A1(S) transition of Mn2+ located in the octahedral coordination site of the host. Owing to the charge compensation mechanism and produced oxygen vacancies, the self‐reduction of Mn3+ to Mn2+ ions is realized and the oxidization is inhibited. The mullite nanocrystals acted as additional scattering centers introduce Rayleigh scattering to enhance the emission intensity. Moreover, benefitted from the established mullite nanocrystals network, the Mn2+‐doped GCs exhibit improved thermal conductivity up to 1.79 W K−1 m−1 and more excellent mechanical properties than conventional GCs, simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.