Identifying commuting patterns for an urban network is important for various traffic applications (e.g., traffic demand management). Some studies, such as the gravity models, urban-system-model, K-means clustering, have provided insights into the investigation of commuting pattern recognition. However, commuters' route feature is not fully considered or not accurately characterized. In this study, a systematic framework considering the route feature for commuting pattern recognition was developed for urban road networks. Three modules are included in the proposed framework. These modules were proposed based on automatic license plate recognition (ALPR) data. First, the temporal and spatial features of individual vehicles were extracted based on the trips detected by ALPR sensors, then a hierarchical clustering technique was applied to classify the detected vehicles and the ratio of commuting trips was derived. Based on the ratio of commuting trips, the temporal and spatial commuting patterns were investigated, respectively. The proposed method was finally implemented in a ring expressway of Kunshan, China. The results showed that the method can accurately extract the commuting patterns. Further investigations revealed the dynamic temporal-spatial features of commuting patterns. The findings of this study demonstrate the effectiveness of the proposed method in mining commuting patterns at urban traffic networks.
Road network traffic management and control are the key mechanisms to alleviate urban traffic congestion. With this study, we aimed to characterize the traffic flow state of urban road networks using the Macroscopic Fundamental Diagram (MFD) to support area traffic control. The core property of an MFD is that the network flow is maximized when network traffic stays at an optimal accumulation state. The property can be used to optimize the temporal and spatial distribution of traffic flow with applications such as gating control. MFD construction is the basis of these MFD-based applications. Although many studies have been conducted to construct MFDs, few studies are dedicated to improving the accuracy considering the reliability of different sources of data. To this end, we propose an MFD construction method using multi-source data based on Dempster–Shafer evidence (DS evidence) theory considering the reliability of different data sources. First, the MFD was constructed using VTD and CSD, separately. Then, the fused MFD was derived by quantifying the reliability of different sources of data for each MFD parameter based on DS evidence theory. The results under real data and simulated data show that the accuracy of the constructed MFDs was greatly improved considering the reliability of different data sources (the maximum MFD estimation error was reduced by 22.3%). The proposed method has the potential to support the evaluation of traffic operations and the optimization of signal control schemes for urban traffic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.