Considerable efforts have been devoted to the development of dynamic origin-destination (OD) estimation models, which are a key step to realizing self-adaptive traffic control systems for urban traffic management. However, most of the models proposed to date estimate OD flows based on a single traffic data source, and their performance is limited by the coverage and accuracy of traffic sensors. The inherent difficulty in estimating the dynamic traffic assignment matrix means that dynamic OD estimation remains a challenge for real-life applications. This paper proposes the use of a Kalman filter for dynamic OD estimation using multi-source sensor data. The dynamic characteristic of changing OD flow over time is analyzed, and the problem of dynamic OD estimation is converted to a problem of estimating OD structural deviation. The resulting dynamic relationship between traffic volume and OD structural deviation is then used to establish the Kalman filter model. An improved traffic assignment approach is developed and embedded into the measurement equation of the Kalman filter model to enable dynamic updating of the traffic assignment matrix. A dual self-adaptive mechanism based on the Kalman filter is used to calibrate the model. The proposed method was implemented on a real-life traffic network in the downtown area of Kunshan City, China. The results show that the proposed method is more accurate than, and outperforms, the traditional link-volume-based and turning-movement-based methods.
Urban traffic flow forecasting is essential to proactive traffic control and management. Most existing forecasting methods depend on proper and reliable input features, for example, weather conditions and spatiotemporal lagged variables of traffic flow. However, the feature selection process is often done manually without comprehensive evaluation and leads to inaccurate results. For that challenge, this paper presents an approach combining the bias-corrected random forests algorithm with a data-driven feature selection strategy for short-term urban traffic flow forecasting. First, several input features were extracted from traffic flow time series data. Then the importance of these features was quantified with the permutation importance measure. Next, a data-driven feature selection strategy was introduced to identify the most important features. Finally, the forecasting model was built on the bias-corrected random forests algorithm and the selected features. The proposed approach was validated with data collected from three types of urban roads (expressway, major arterial, and minor arterial) in Kunshan City, China. The proposed approach was also compared with 10 existing approaches to verify its effectiveness. The results of the validation and comparison show that even without further model tuning, the proposed approach achieves the lowest average mean absolute error and root mean square error on six stations while it achieves the second-best average performance in mean absolute percentage error. Meanwhile, the training efficiency is improved compared with the original random forests method owing to the use of the feature selection strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.