Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.
Ultrabright organic dots with aggregation-induced emission characteristics (AIE dots) are prepared and shown to exhibit a high quantum yield, a, large two-photon absorption cross-section, and low in vivo toxicity. Real-time two-photon intravital blood vascular imaging in various tissues substantiates that the AIE dots are effective probes for in vivo vasculature imaging in a deep and high-contrast manner.
In addition to high-fat diet (HFD) and inactivity, inflammation and microbiota composition contribute to obesity. Inhibitory immune receptors, such as NLRP12, dampen inflammation and are important for resolving inflammation, but their role in obesity is unknown. We show that obesity in humans correlates with reduced expression of adipose tissue NLRP12. Similarly, Nlrp12 mice show increased weight gain, adipose deposition, blood glucose, NF-κB/MAPK activation, and M1-macrophage polarization. Additionally, NLRP12 is required to mitigate HFD-induced inflammasome activation. Co-housing with wild-type animals, antibiotic treatment, or germ-free condition was sufficient to restrain inflammation, obesity, and insulin tolerance in Nlrp12 mice, implicating the microbiota. HFD-fed Nlrp12 mice display dysbiosis marked by increased obesity-associated Erysipelotrichaceae, but reduced Lachnospiraceae family and the associated enzymes required for short-chain fatty acid (SCFA) synthesis. Lachnospiraceae or SCFA administration attenuates obesity, inflammation, and dysbiosis. These findings reveal that Nlrp12 reduces HFD-induced obesity by maintaining beneficial microbiota.
We demonstrate through PdO doping
that creation of heterojunctions
on Co3O4 nanoparticles can quantitatively adjust
band-gap and Fermi energy levels to study the impact of metal oxide
nanoparticle semiconductor properties on cellular redox homeostasis
and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize
a nanoparticle library in which the gradual increase in the PdO content
(0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions.
This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals.
Interestingly, there was no concomitant superoxide generation, which
could reflect the hole dominance of a p-type semiconductor.
Although the electron flux across the heterojunctions induced upward
band bending, the Ec levels of the doped
particles showed energy overlap with the biological redox potential
(BRP). This allows electron capture from the redox couples that maintain
the BRP from −4.12 to −4.84 eV, causing disruption of
cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in
cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced
incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative
stress presented as a tiered cellular response involving superoxide
generation, glutathione depletion, cytokine production, and cytotoxicity
in epithelial and macrophage cell lines. A progressive series of acute
pro-inflammatory effects could also be seen in the lungs of animals
exposed to incremental PdO-doped particles. All considered, generation
of a combinatorial PdO/Co3O4 nanoparticle library
with incremental heterojunction density allowed us to demonstrate
the integrated role of Ev, Ec, and Ef levels in the generation
of oxidant injury and inflammation by the p-type
semiconductor, Co3O4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.