Electro-hydrostatic actuator (EHA) has significance in a variety of industrial tasks. For the purpose of elevating the working performance, we put forward a sliding mode control strategy for EHA operation with a damping variable sliding surface. To start with, a novel sliding mode controller and an extended state observer (ESO) are established to perform the proposed control strategy. Furthermore, based on the modeling of the EHA, simulations are carried out to analyze the working properties of the controller. More importantly, experiments are conducted for performance evaluation based on the simulation results. In comparison to the widely used control strategies, the experimental results establish strong evidence of both overshoot suppression and system rapidity.
Although considerable research achievements have been made to address the plastic crisis using enzymes, their applications are limited due to incomplete degradation and low efficiency. Herein, we report the identification and subsequent engineering of BHETases, which have the potential to improve the efficiency of PET recycling and upcycling. Two BHETases (ChryBHETase and BsEst) are identified from the environment via enzyme mining. Subsequently, mechanism-guided barrier engineering is employed to yield two robust and thermostable ΔBHETases with up to 3.5-fold enhanced kcat/KM than wild-type, followed by atomic resolution understanding. Coupling ΔBHETase into a two-enzyme system overcomes the challenge of heterogeneous product formation and results in up to 7.0-fold improved TPA production than seven state-of-the-art PET hydrolases, under the conditions used here. Finally, we employ a ΔBHETase-joined tandem chemical-enzymatic approach to valorize 21 commercial post-consumed plastics into virgin PET and an example chemical (p-phthaloyl chloride) for achieving the closed-loop PET recycling and open-loop PET upcycling.
A novel sliding mode control (SMC) design framework is devoted to providing a favorable SMC design solution for the position tracking control of electrohydrostatic actuation system (EHSAS). This framework is composed of three submodules as follows: a reduced-order model of EHSAS, a disturbance sliding mode observer (DSMO), and a new adaptive reaching law (NARL). First, a reduced-order model is obtained by analyzing the flow rate continuation equation of EHSAS to avoid the use of a state observer. Second, DSMO is proposed to estimate and compensate mismatched disturbances existing in the reduced-order model. In addition, a NARL is developed to tackle the inherent chattering problem of SMC. Extensive simulations are conducted compared with the wide adoption of three-loop PID method on the cosimulation platform of EHSAS, which is built by combining AMESim with MATLAB/Simulink, to verify the feasibility and superiority of the proposed scheme. Results demonstrate that the chattering can be effectively attenuated, and the mismatched disturbance can be satisfyingly compensated. Moreover, the transient performance, steady-state accuracy, and robustness of position control are all improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.