Due to the abuse of antibiotics in clinical, animal husbandry, and aquaculture, drug-resistant pathogens are produced, which poses a great threat to human and the public health. At present, a rapid and effective drug sensitivity test method is urgently needed to effectively control the spread of drug-resistant bacteria. Using methylene blue as a redox probe, the electrochemical signals of methylene blue in drug-resistant Escherichia coli strains were analyzed by a CV method. Graphene ink has been used for enhancing the electrochemical signal. Compared with the results of the traditional drug sensitivity test, we proposed a rapid electrochemical drug sensitivity test method which can effectively identify the drug sensitivity of Escherichia coli. The sensitivity of four E. coli isolates to ciprofloxacin, gentamicin, and ampicillin was tested by an electrochemical drug sensitivity test. The respiratory activity value %RA was used as an indicator of bacterial resistance by electrochemical method.
The content of capsaicin can be used as exotic markers of kitchen recycled oil. In this study, a bimetallic MOF nanocage (FeIII-HMOF-5) was successfully prepared by a one-step solvothermal method and used for electrode modification to prepare a highly sensitive electrochemical sensor for rapid detection of capsaicin. Capsaicin could be selectively immobilized onto the FeIII-HMOF-5 surface during infiltrating adsorption, thus exhibiting very excellent sensing performance. The detection conditions of the sensor were optimized. Under optimum conditions, the electrochemical sensor can linearly detect capsaicin in the range between 1–60 μM with a detection limit of 0.4 μM. In addition, the proposed electrochemical sensor showed excellent stability and selectivity. The real sample tests indicated the proposed electrochemical sensor was comparable to conventional UV spectrophotometry.
Microcarrier culture technology has attached more attention, especially for scale-up cell culture in the filed of tissue engineering. The present work introduces a microcarrier with hydroxyapatite (HA) on hollow glass microsphere. Hollow glass microspheres with a main composition of SiO 2 (55–65 wt.%), Al 2 O 3 (26–35 wt.%), were pretreated by NaOH , on which hydroxyapatite coating was deposited by biomimetic process. The phase composition and morphology were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscope, field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HRTEM), respectively. The results showed that after immersion for 15 days in 1.5 SBF, the uniform and dense HA coating was formed and it has porous surface and low crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.