Abstract. Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.
Multi-sensor systems (MSS) have been increasingly applied in pattern classification while searching for the optimal classification framework is still an open problem. The development of the classifier ensemble seems to provide a promising solution. The classifier ensemble is a learning paradigm where many classifiers are jointly used to solve a problem, which has been proven an effective method for enhancing the classification ability. In this paper, by introducing the concept of Meta-feature (MF) and Trans-function (TF) for describing the relationship between the nature and the measurement of the observed phenomenon, classification in a multi-sensor system can be unified in the classifier ensemble framework. Then an approach called Genetic Algorithm based Classifier Ensemble in Multi-sensor system (GACEM) is presented, where a genetic algorithm is utilized for optimization of both the selection of features subset and the decision combination simultaneously. GACEM trains a number of classifiers based on different combinations of feature vectors at first and then selects the classifiers whose weight is higher than the pre-set threshold to make up the ensemble. An empirical study shows that, compared with the conventional feature-level voting and decision-level voting, not only can GACEM achieve better and more robust performance, but also simplify the system markedly.
In order to solve the forced shaking problem of the Autonomous Underwater Vehicle (AUV) facing dynamic obstacles in the path planning when the Artificial Potential Field Method is used, a method of removing the shaking state based on a favorable path is proposed, and on this basis, Visibility Graph Method is used to optimize the path of the AUV to avoid dynamic obstacles. By judging the relative motion direction of AUV and dynamic obstacle, the moving direction of AUV is adjusted based on Visibility Graph Method when it is far away from the obstacle. When it is close to the obstacle, the direction conducive to approaching the target point is selected as the favorable forward direction to bypass the obstacle. The simulation results show that the dynamic obstacle avoidance path optimization method based on the Visibility Graph Method reduces the number of moving steps by about 19% compared with the traditional method when dealing with a single dynamic obstacle, and can be applied in complex environments with multiple dynamic obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.