A small fault in a large communication network may cause abrupt and large alarms, making the localization of the root cause of failure a difficult task. Traditionally, fault localization is carried out by an operator who uses alarms in alarm lists; however, fault localization process complexity needs to be addressed using more autonomous and intelligent approaches. Here, we present an overall framework that uses a message propagation mechanism of belief networks to address fault localization problems in communication networks. The proposed framework allows for knowledge storage, inference, and message transmission, and can identify a fault’s root cause in an event-driven manner to improve the automation of the fault localization process. Avoiding the computational complexity of traditional Bayesian networks, we perform fault inference in polytrees with a noisy OR-gate model (PTNORgate), which can reduce computational complexity. We also offer a solution to store parameters in a network parameter table, similar to a routing table in communication networks, with the aim of facilitating the development of the algorithm. Case studies and a performance evaluation show that the solution is suitable for fault localization in communication networks in terms of speed and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.