Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.
BackgroundTemperature stress is a major environmental factor affecting not only plant growth and development, but also fruit postharvest life and quality. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in various biological processes. Harvested banana fruit can exhibit distinct symptoms in response to different temperature stresses, but the underlying miRNA-mediated regulatory mechanisms remained unknown.ResultsHere, we profiled temperature-responsive miRNAs in banana, using deep sequencing and computational and molecular analyses. In total 113 known miRNAs and 26 novel banana-specific miRNAs were identified. Of these miRNAs, 42 miRNAs were expressed differentially under cold and heat stresses. Degradome sequencing identified 60 target genes regulated by known miRNAs and half of these targets were regulated by 15 temperature-responsive miRNAs. The correlative expression patterns between several miRNAs and their target genes were further validated via qRT-PCR. Our data showed that miR535 and miR156 families may derive from a common ancestor during evolution and jointly play a role in fine-tuning SPL gene expression in banana. We also identified the miRNA-triggered phased secondary siRNAs in banana and found miR393-TIR1/AFB phasiRNA production displaying cold stress-specific enrichment.ConclusionsOur results provide a foundation for understanding the miRNA-dependent temperature stress response in banana. The characterized correlations between miRNAs and their response to temperature stress could serve as markers in the breeding programs or tools for improving temperature tolerance of banana.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5395-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.