Adversarial patch is one of the important forms of performing adversarial attacks in the physical world. To improve the naturalness and aggressiveness of existing adversarial patches, location-aware patches are proposed, where the patch's location on the target object is integrated into the optimization process to perform attacks. Although it is effective, efficiently finding the optimal location for placing the patches is challenging, especially under the black-box attack settings. In this paper, we propose the Distribution-Optimized Adversarial Patch (DOPatch), a novel method that optimizes a multimodal distribution of adversarial locations instead of individual ones. DOPatch has several benefits: Firstly, we find that the locations' distributions across different models are pretty similar, and thus we can achieve efficient query-based attacks to unseen models using a distributional prior optimized on a surrogate model. Secondly, DOPatch can generate diverse adversarial samples by characterizing the distribution of adversarial locations. Thus we can improve the model's robustness to location-aware patches via carefully designed Distributional-Modeling Adversarial Training (DOP-DMAT). We evaluate DOPatch on various face recognition and image recognition tasks and demonstrate its superiority and efficiency over existing methods. We also conduct extensive ablation studies and analyses to validate the effectiveness of our method and provide insights into the distribution of adversarial locations.
Graph neural networks (GNNs) have shown superiority in many prediction tasks over graphs due to their impressive capability of capturing nonlinear relations in graph-structured data. However, for node classification tasks, often, only marginal improvement of GNNs over their linear counterparts has been observed. Previous works provide very few understandings of this phenomenon. In this work, we resort to Bayesian learning to deeply investigate the functions of non-linearity in GNNs for node classification tasks. Given a graph generated from the statistical model CSBM, we observe that the max-a-posterior estimation of a node label given its own and neighbors' attributes consists of two types of non-linearity, a possibly nonlinear transformation of node attributes and a ReLU-activated feature aggregation from neighbors. The latter surprisingly matches the type of non-linearity used in many GNN models. By further imposing Gaussian assumption on node attributes, we prove that the superiority of those ReLU activations is only significant when the node attributes are far more informative than the graph structure, which nicely matches many previous empirical observations. A similar argument can be achieved when there is a distribution shift of node attributes between the training and testing datasets. Finally, we verify our theory on both synthetic and real-world networks.Preprint. Under review.
Anomaly detection is a fundamental yet challenging problem in machine learning due to the lack of label information. In this work, we propose a novel and powerful framework, dubbed as SLA 2 P, for unsupervised anomaly detection. After extracting representative embeddings from raw data, we apply random projections to the features and regard features transformed by different projections as belonging to distinct pseudo classes. We then train a classifier network on these transformed features to perform self-supervised learning. Next we add adversarial perturbation to the transformed features to decrease their softmax scores of the predicted labels and design anomaly scores based on the predictive uncertainties of the classifier on these perturbed features.Our motivation is that because of the relatively small number and the decentralized modes of anomalies, 1) the pseudo label classifier's training concentrates more on learning the semantic information of normal data rather than anomalous data; 2) the transformed features of the normal data are more robust to the perturbations than those of the anomalies. Consequently, the perturbed transformed features of anomalies fail to be classified well and accordingly have lower anomaly scores than those of the normal samples. Extensive experiments on image, text and inherently tabular benchmark datasets back up our findings and indicate that SLA 2 P achieves state-of-the-art results on unsupervised anomaly detection tasks consistently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.