The APOE 4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of -amyloid (A). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower A degradation capacity. Human CSF from APOE 4/4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE 3/3 carriers. Enhancing ABCA1 activity rescued impaired A degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipidpoor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.
The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aβ42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively. We presently utilized CS-6253, a peptide shown to directly activate ABCA1 in vitro, and examined the extent to which it can affect the degree of lipidation of apoE4 in vivo and counteract the associated brain and behavioral pathologies. This revealed that treatment of young apoE4-targeted replacement mice with CS-6253 increases the lipidation of apoE4. This was associated with a reversal of the apoE4-driven Aβ42 accumulation and tau hyperphosphorylation in hippocampal neurons, as well as of the synaptic impairments and cognitive deficits. These findings suggest that the pathological effects of apoE4 in vivo are associated with decreased activation of ABCA1 and impaired lipidation of apoE4 and that the downstream brain-related pathology and cognitive deficits can be counteracted by treatment with the ABCA1 agonist CS-6253. These findings have important clinical ramifications and put forward ABCA1 as a promising target for apoE4-related treatment of AD.
Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.
Introduction Alzheimer's disease (AD) and synucleinopathies share common pathological mechanisms. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, also increases the risk for dementia in pure synucleinopathies. We presently examined the effects of α-synuclein deficiency (α-syn−/−) and sex on apoE4-driven pathologies. Methods AD-related, synaptic, and vascular markers were analyzed in female and male α-syn−/− and α-syn+/+ apoE4, apoE3, and apoE3/E4 mice. Results ApoE4 was hypolipidated, and this effect was unchanged by α-syn−/− and sex. The levels of synaptic markers were lower, and the levels of AD-related parameters were higher in female α-syn−/− apoE4 mice compared with the corresponding apoE3 mice. By comparison, apoE4 had small effects on the AD parameters of male and female α-syn+/+ apoE4 mice. Discussion Although α-syn−/− does not affect the upstream lipidation impairment of apoE4, it acts as a “second hit” enhancer of the subsequent apoE4-driven pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.