Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na
+
taurocholate cotransporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP and G protein–coupled bile acid receptor–double KO (TGR5–double KO) mice were equally protected against diet-induced obesity as NTCP–single KO mice. NTCP-KO mice displayed decreased intestinal fat absorption and a trend toward higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.
Bile salts play a pivotal role in lipid homeostasis, are sensed by specialized receptors, and have been implicated in various disorders affecting the gut or liver. They may play a role either as culprit or as potential panacea. Four very efficient transporters mediate most of the hepatic and intestinal bile salt uptake and efflux, and are each essential for the efficient enterohepatic circulation of bile salts. Starting from the intestinal lumen, conjugated bile salts cross the otherwise impermeable lipid bilayer of (primarily terminal ileal) enterocytes through the apical sodium–dependent bile acid transporter (gene
SLC10A2
) and leave the enterocyte through the basolateral heteromeric organic solute transporter, which consists of an alpha and beta subunit (encoded by
SLC51A
and
SLC51B
). The Na
+
‐taurocholate cotransporting polypeptide (gene
SLC10A1
) efficiently clears the portal circulation of bile salts, and the apical bile salt export pump (gene
ABCB11
) pumps the bile salts out of the hepatocyte into primary bile, against a very steep concentration gradient. Recently, individuals lacking either functional Na
+
‐taurocholate cotransporting polypeptide or organic solute transporter have been described, completing the quartet of bile acid transport deficiencies, as apical sodium–dependent bile acid transporter and bile salt export pump deficiencies were already known for years. Novel pathophysiological insights have been obtained from knockout mice lacking functional expression of these genes and from pharmacological transporter inhibition in mice or humans.
Conclusion
: We provide a concise overview of the four main bile salt transport pathways and of their status as possible targets of interventions in cholestatic or metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.