The Rho-associated kinases ROCK1 and ROCK2 are critical for cancer cell migration and invasion, suggesting they may be useful therapeutic targets. In this study, we describe the discovery and development of RKI-1447, a potent small molecule inhibitor of ROCK1 and ROCK2. Crystal structures of the RKI-1447/ROCK1 complex revealed that RKI-1447 is a Type I kinase inhibitor that binds the ATP binding site through interactions with the hinge region and the DFG motif. RKI-1447 suppressed phosphorylation of the ROCK substrates MLC-2 and MYPT-1 in human cancer cells, but had no effect on the phosphorylation levels of the AKT, MEK and S6 kinase at concentrations as high as 10 μM. RKI-1447 was also highly selective at inhibiting ROCK-mediated cytoskeleton re-organization (actin stress fiber formation) following LPA stimulation, but does not affect PAK-meditated lamellipodia and filopodia formation following PDGF and Bradykinin stimulation, respectively. RKI-1447 inhibited migration, invasion and anchorage-independent tumor growth of breast cancer cells. In contrast, RKI-1313, a much weaker analog in vitro, had little effect on the phosphorylation levels of ROCK substrates, migration, invasion or anchorage-independent growth. Lastly RKI-1447 was highly effective at inhibiting the outgrowth of mammary tumors in a transgenic mouse model. In summary, our findings establish RKI-1447 as a potent and selective ROCK inhibitor with significant anti-invasive and anti-tumor activities and offer a preclinical proof-of-concept that justify further examination of RKI-1447 suitability as a potential clinical candidate.
Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC50 = 650 nM) and ROCK2 (IC50 = 670 nM), whereas compound 24 was more selective for ROCK2 (IC50 = 100 nM) over ROCK1 (IC50 = 1690 nM). The crystal structure of the compound 18–ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.
ROCK1 and ROCK2 mediate important processes such as cell migration, invasion and metastasis; making them good targets for the development of antitumor agents. Recently, using a fragment-based approach and X-ray crystallography, we reported on the design and synthesis of novel Rho-kinase inhibitors (RKIs). Here, we selected a pair of RKIs, the closely-related structural analogues RKI-18 (potent; IC50 values of 397 nM (ROCK1) and 349 nM (ROCK2)) and RKI-11 (weak/inactive; IC50 values of 38 µM (ROCK1) and 45 µM (ROCK2), as chemical probes and determined their effects on cytoskeleton organization, signaling, apoptosis, anchorage-dependent and –independent growth, migration and invasion. RKI-18 but not RKI-11 suppresses potently the phosphorylation of the ROCK substrate MLC2 in intact human breast, lung, colon and prostate cancer cells. Furthermore, RKI-18 is highly selective at decreasing the levels of P-MLC2 over those of P-Akt, P-S6 and P-Erk ½. RKI-18 suppresses ROCK-mediated actin fiber formation following stimulation with LPA as well as PAK-mediated lamelipodia and filopodia formation following bradykinin or PDGF stimulation. Furthermore, RKI-18 but not RKI-11 inhibits migration, invasion and anchorage-independent growth of human breast cancer cells. The fact that the active ROCK inhibitor RKI-18 but not the inactive closely related structural analogue RKI-11 is effective at suppressing malignant transformation suggests that inhibition of ROCK with RKI-18 results in preventing migration, invasion and anchorage-independent growth. The potential of this class of RKIs as anti tumor agents warrants further advanced preclinical studies.
BackgroundThe receptor for the cardiac hormone atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPRA), is expressed in cancer cells, and natriuretic peptides have been implicated in cancers. However, the direct role of NPRA signaling in prostate cancer remains unclear.ResultsNPRA expression was examined by western blotting, RT-PCR and immunohistochemistry. NPRA was downregulated by transfection of siRNA, shRNA and NPRA inhibitor (iNPRA). Antitumor efficacy of iNPRA was tested in mice using a TRAMP-C1 xenograft. Here, we demonstrated that NPRA is abundantly expressed on tumorigenic mouse and human prostate cells, but not in nontumorigenic prostate epithelial cells. NPRA expression showed positive correlation with clinical staging in a human PCa tissue microarray. Down-regulation of NPRA by siNPRA or iNPRA induced apoptosis in PCa cells. The mechanism of iNPRA-induced anti-PCa effects was linked to NPRA-induced expression of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine over-expressed in PCa and significantly reduced by siNPRA. Prostate tumor cells implanted in mice deficient in atrial natriuretic peptide receptor A (NPRA-KO) failed to grow, and treatment of TRAMP-C1 xenografts with iNPRA reduced tumor burden and MIF expression. Using the TRAMP spontaneous PCa model, we found that NPRA expression correlated with MIF expression during PCa progression.ConclusionsCollectively, these results suggest that NPRA promotes PCa development in part by regulating MIF. Our findings also suggest that NPRA is a potential prognostic marker and a target for PCa therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.