The genetic control of the antibody response to a synthetic polypeptide antigen designated poly-L(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(T, G)-A--L] has been studied in congenic high responder C3H.SW (H-2b) and low responder C3H/HeJ (H-2k) strains of mice. This response is controlled by the Ir-1 gene and is H-2 linked. The method employed was to study the ability of specifically primed or "educated" T cells of each strain to produce cooperative factors for (T, G)-A--L in vitro. Such factors have been shown to be capable of replacing the requirement for T cells in the thymus-dependent antibody response to (T, G)-A--L in vivo. The T-cell factors produced were tested for their ability to cooperate with B cells of either high or low responder origin by transfer together with bone marrow cells and (T, G)-A--L into heavily irradiated, syngeneic (for bone marrow donor) recipients. Direct anti-(T, G)-A--L plaque-forming cells were measured later in the spleens of the recipients. The results showed that (a) educated T cells of both high and low responder origin produced active cooperative factors to (T, G)-A--L, and no differences between the strains in respect to production of T-cell factors could be demonstrated; and (b) such factors, whether of high or low responder origin, cooperated efficiently with B cells of high responder origin only, and hardly at all with B cells of low responder origin. The conclusion was drawn that the cellular difference between the two strains lies in the responsiveness of their B cells to specific signals or stimuli received from T cells. As far as could be discerned by the methods used, no T-cell defect existed in low responder mice and the expression of the controlling Ir-1 gene was solely at the level of the B cells in this case.
The cellular basis of the genetic control of the immune response to poly(LTyr, LGlu)-polyDLAla--polyLLys [(T,G)-A--L] in SJL (H-2s, low responder) mice has been investigated using T-cell factors. Thymocytes of SJL origin were educated to (T,G)-A--L and tested for their ability to produce an antigen-specific factor capable of cooperating in vivo with bone marrow cells of either SJL or C3H.SW (high responder) origin. SJL T cells were found to be incapable of producing such a cooperative factor, in contrast with results previously obtained with C3H/HeJ (low responders) and C3H.SW strains. Moreover, SJL bone marrow cells did not produce an antibody response to (T,G)-A--L, even when combined with factor produced by high responder (C3H.SW) mice. Thus, both T and B cells appear to be defective in the SJL strain in the response to (T,G)-A--L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.