Background While traditional epidemiological approaches have supported significant reductions in malaria incidence across many countries, higher resolution information about local and regional malaria epidemiology will be needed to efficiently target interventions for elimination. The application of genetic epidemiological methods for the analysis of parasite genetics has, thus far, primarily been confined to research settings. To illustrate how these technical methods can be used to advance programmatic and operational needs of National Malaria Control Programmes (NMCPs), and accelerate global progress to eradication, this manuscript presents seven use cases for which genetic epidemiology approaches to parasite genetic data are informative to the decision-making of NMCPs. Methods The use cases were developed through a highly iterative process that included an extensive review of the literature and global guidance documents, including the 2017 World Health Organization’s Framework for Malaria Elimination, and collection of stakeholder input. Semi-structured interviews were conducted with programmatic and technical experts about the needs and opportunities for genetic epidemiology methods in malaria elimination. Results Seven use cases were developed: Detect resistance, Assess drug resistance gene flow, Assess transmission intensity, Identify foci, Determine connectivity of parasite populations, Identify imported cases, and Characterize local transmission chains. The method currently used to provide the information sought, population unit for implementation, the pre-conditions for using these approaches, and post-conditions intended as a product of the use case were identified for each use case. Discussion This framework of use cases will prioritize research and development of genetic epidemiology methods that best achieve the goals of NMCPs, and ultimately, inform the establishment of normative policy guidance for their uses. With significant engagement of stakeholders from malaria endemic countries and collaboration with local programme experts to ensure strategic implementation, genetic epidemiological approaches have tremendous potential to accelerate global malaria elimination efforts. Electronic supplementary material The online version of this article (10.1186/s12936-019-2784-0) contains supplementary material, which is available to authorized users.
IMPORTANCEVariants of SARS-CoV-2 have sequence variations in the viral genome that may alter the accuracy of rapid diagnostic tests. OBJECTIVE To assess the analytical and clinical accuracy of 2 rapid diagnostic tests for detecting SARS-CoV-2 during 3 phases of variants. DESIGN, SETTING, AND PARTICIPANTS This diagnostic study included participants aged 18 years or older who reported onset of COVID-19-like symptoms within the prior 5 days and were tested at multiple COVID-19 testing locations in King County, Washington, from February 17, 2021, to January 11, 2022, during 3 distinct phases of SARS-CoV-2 infection (pre-Delta, Delta, and Omicron). INTERVENTIONS Two anterior nasal swab specimens were collected from each participant-1 for onsite testing by the SCoV-2 Ag Detect Rapid Self-Test and 1 for reverse transcriptase-polymerase chain reaction (RT-PCR) testing. MAIN OUTCOMES AND MEASURES The analytical limit of detection of the 2 rapid diagnostic tests (SCoV-2 Ag Detect Rapid Self-Test and BinaxNOW COVID-19 Ag Card) was assessed using Omicron (B.1.1.529/BA.1), Delta (B.1.617.2), and a wild-type (USA-WA1/2020) variant. Diagnostic sensitivity and specificity of clinical testing for the rapid antigen tests were compared with that of RT-PCR testing. RESULTS A total of 802 participants were enrolled (mean [SD] age, 37.3 [13.3] years; 467 [58.2%]female), 424 (52.9%) of whom had not received COVID-19 vaccination and presented a median of 2 days (IQR, 1-3 days) from symptom onset. Overall, no significant differences were found in the analytical limit of detection or clinical diagnostic accuracy of rapid antigen testing across SARS-CoV-2 variants. The estimated limit of detection for both rapid nucleocapsid antigen tests was at or below a 50% tissue culture infectious dose of 62.5, and the positive percent agreement of the SCoV-2 Ag Detect Rapid Self-Test ranged from 81.2% (95% CI, 69.5%-89.9%) to 90.7% (95% CI, 77.9%-97.4%) across the 3 phases of variants. The diagnostic sensitivity increased for nasal swabs with a lower cycle threshold by RT-PCR, which correlates with a higher viral load. CONCLUSIONS AND RELEVANCEIn this diagnostic study, analytical and clinical performance data demonstrated accuracy of 2 rapid antigen tests among adults with COVID-19 symptoms across 3 phases of SARS-CoV-2 variants. The findings suggest that home-based rapid antigen testing programs may be an important intervention to reduce global SARS-CoV-2 transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.