Background-Female sex is an independent risk factor for torsade de pointes in long-QT syndrome. In women, QT interval and torsade de pointes risk fluctuate dynamically during the menstrual cycle and pregnancy. Accumulating clinical evidence suggests a role for progesterone; however, the effect of progesterone on cardiac repolarization remains undetermined. Methods and Results-We investigated the effects of progesterone on action potential duration and membrane currents in isolated guinea pig ventricular myocytes. Progesterone rapidly shortened action potential duration, which was attributable mainly to enhancement of the slow delayed rectifier K ϩ current (I Ks ) under basal conditions and inhibition of L-type Ca 2ϩ currents (I Ca,L ) under cAMP-stimulated conditions. The effects of progesterone were mediated by nitric oxide released via nongenomic activation of endothelial nitric oxide synthase; this signal transduction likely takes place in the caveolae because sucrose density gradient fractionation experiments showed colocalization of the progesterone receptor c-Src, phosphoinositide 3-kinase, Akt, and endothelial nitric oxide synthase with KCNQ1, KCNE1, and Ca V 1.2 in the caveolae fraction. We used computational single-cell and coupled-tissue action potential models incorporating the effects of progesterone on I Ks and I Ca,L ; the model reproduces the fluctuations of cardiac repolarization during the menstrual cycle observed in women and predicts the protective effects of progesterone against rhythm disturbances in congenital and drug-induced long-QT syndrome. Conclusions-Our data show that progesterone modulates cardiac repolarization by nitric oxide produced via a nongenomic pathway. A combination of experimental and computational analyses of progesterone effects provides a framework to understand complex fluctuations of QT interval and torsade de pointes risks in various hormonal states in women.
The sinoatrial node (SAN) is a complex structure that exhibits anatomical and functional heterogeneity which may depend on: 1) The existence of distinct cell populations, 2) electrotonic influences of the surrounding atrium, 3) the presence of a high density of fibroblasts, and 4) atrial cells intermingled within the SAN. Our goal was to utilize a computer model to predict critical determinants and modulators of excitation and conduction in the SAN. We built a theoretical “non-uniform” model composed of distinct central and peripheral SAN cells and a “uniform” model containing only central cells connected to the atrium. We tested the effects of coupling strength between SAN cells in the models, as well as the effects of fibroblasts and interspersed atrial cells. Although we could simulate single cell experimental data supporting the “multiple cell type” hypothesis, 2D “non-uniform” models did not simulate expected tissue behavior, such as central pacemaking. When we considered the atrial effects alone in a simple homogeneous “uniform” model, central pacemaking initiation and impulse propagation in simulations were consistent with experiments. Introduction of fibroblasts in our simulated tissue resulted in various effects depending on the density, distribution, and fibroblast-myocyte coupling strength. Incorporation of atrial cells in our simulated SAN tissue had little effect on SAN electrophysiology. Our tissue model simulations suggest atrial electrotonic effects as plausible to account for SAN heterogeneity, sequence, and rate of propagation. Fibroblasts can act as obstacles, current sinks or shunts to conduction in the SAN depending on their orientation, density, and coupling.
Background Sinus node (SN) dysfunction is observed in some Long QT syndrome (LQTS) patients, but has not been studied as a function of LQTS genotype. LQTS6 involves mutations in the hERG β-subunit MiRP1, which also interacts with hyperpolarization-activated, cyclic nucleotide gated (HCN) channels - the molecular correlate of SN pacemaker current (If). An LQTS registry search identified a 55 year male with M54T MiRP1 mutation, history of sinus bradycardia (39–56 bpm), and prolonged QTc. Objective We tested if LQTS6 incorporates sinus bradycardia due to abnormal If. Methods We transiently co-transfected neonatal rat ventricular myocytes (to study currents in a myocyte background) with human HCN4 (hHCN4, primary SN isoform) or human HCN2 (hHCN2) and one of the following: empty vector, wildtype hMiRP1 (WT), M54T hMiRP1 (M54T). Current amplitude, voltage dependence and kinetics were measured by whole cell patch clamp. Results M54T co-expression decreased HCN4 current density by 80% compared to hHCN4 alone or with WT, and also slowed HCN4 activation at physiologically relevant voltages. Neither WT nor M54T altered HCN4 voltage dependence. A computer simulation predicts that these changes in HCN4 current would decrease rate and be additive with published effects of M54T mutation on hERG kinetics on rate. Conclusions We conclude that M54T LQTS6 mutation can cause sinus bradycardia through effects on both hERG and HCN currents. Patients with other LQTS6 mutations should be examined for SN dysfunction, and the effect on HCN current determined.
In rabbit, sodium current (INa) contributes to newborn sinoatrial node (SAN) automaticity but is absent in adult SAN, where heart rate is slower. In contrast, heart rate is high and INa is functional in adult mouse SAN. Given the slower heart rates of large mammals, we asked if INa is functionally active in SAN of newborn or adult canine heart. SAN cells were isolated from newborn (6–10 days), young (40–43 days) and adult mongrels. INa was observed in >80% of cells from each age. However, current density was markedly greater in newborn, decreasing with age. At all ages, INa was sensitive to nanomolar tetrodotoxin (TTX); 100 nmol/L inhibited INa by 46.7%, 59.9% and 90.7% in newborn, young and adult cells, respectively. While high TTX sensitivity suggested the presence of non-cardiac isofoms, steady-state inactivation was relatively negative (midpoints −89.7±0.7 mV, −95.1±1.2 mV and −93.4±1.9 mV from newborn to adult). Consequently, INa should be unavailable at physiological potentials under normal conditions, and 100 nmol/L TTX did not change cycle length or action potential parameters of spontaneous adult SAN cells. However, computer modeling predicts the large newborn INa protects against excess rate slowing from strong vagal stimulation. The results show that canine SAN cells have TTX–sensitive INa which decreases with post-natal age. The current does not contribute to normal automaticity in isolated adult cells but can be recruited to sustain excitability if nodal cells are hyperpolarized. This is particularly relevant in newborn, where INa is large and parasympathetic/sympathetic balance favors vagal tone.
The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2-and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.