Steroidal estrogens, originating principally from human excretion, are likely to play a major role in causing widespread endocrine disruption in wild populations of the roach (Rutilus rutilus), a common cyprinid fish, in rivers contaminated by treated sewage effluents. Given the extent of this problem, risk assessment models are needed to predict the location and severity of endocrine disruption in river catchments and to identify areas where regulation of sewage discharges to remove these contaminants is necessary. In this study we attempted to correlate the extent of endocrine disruption in roach in British rivers, with their predicted exposure to steroid estrogens derived from the human population. The predictions of steroid estrogen exposure at each river site were determined by combining the modeled concentrations of the individual steroid estrogens [17β -estradiol (E2), estrone (E1), and 17α -ethinylestradiol (EE2)] in each sewage effluent with their predicted dilution in the immediate receiving water. This model was applied to 45 sites on 39 rivers throughout the United Kingdom. Each site studied was then categorized as either high, medium, or low “risk” on the basis of the assumed additive potency of the three steroid estrogens calculated from data derived from published studies in various cyprinid fish species. We sampled 1,438 wild roach from the predicted high-, medium-, and low-risk river sites and examined them for evidence and severity of endocrine disruption. Both the incidence and the severity of intersex in wild roach were significantly correlated with the predicted concentrations of the natural estrogens (E1 and E2) and the synthetic contraceptive pill estrogen (EE2) present. Predicted steroid estrogen exposure was, however, less well correlated with the plasma vitellogenin concentration measured in the same fish. Moreover, we found no correlation between any of the end points measured in the roach and the proportion of industrial effluents entering the rivers we studied. Overall, our results provide further and substantive evidence to support the hypothesis that steroidal estrogens play a major role in causing intersex in wild freshwater fish in rivers in the United Kingdom and clearly show that the location and severity of these endocrine-disrupting effects can be predicted.
Despite increasing application of silver nanoparticles (NPs) in industry and consumer products, there is still little known about their potential toxicity, particularly to organisms in aquatic environments. To investigate the fate and effects of silver NPs in fish, rainbow trout (Oncorhynchus mykiss) were exposed via the water to commercial silver particles of three nominal sizes: 10 nm (N(10)), 35 nm (N(35)), and 600-1600 nm (N(Bulk)), and to silver nitrate for 10 days. Uptake into the gills, liver, and kidneys was quantified by inductively coupled plasma-optical emission spectrometry, and levels of lipid peroxidation in gills, liver, and blood were determined by measurements of thiobarbituric acid reactive substances. Expression of a suite of genes, namely cyp1a2, cyp3a45, hsp70a, gpx, and g6pd, known to be involved in a range of toxicological response to xenobiotics was analyzed in the gills and liver using real-time PCR. Uptake of silver particles from the water into the tissues of exposed fish was low but nevertheless occurred for current estimated environmental exposures. Of the silver particles tested, N(10) were found to be the most highly concentrated within gill tissues and N(10) and N(Bulk) were the most highly concentrated in liver. There were no effects on lipid peroxidation in any of the tissues analyzed for any of the silver particles tested, and this is likely due to the low uptake rates. However, exposure to N(10) particles was found to induce expression of cyp1a2 in the gills, suggesting a possible increase in oxidative metabolism in this tissue.
Nanotechnology is a rapidly growing industry of global economic importance, exploiting the novel characteristics of materials manufactured at the nanoscale. The properties of engineered nanoparticles (ENPs) that make them useful in a wide range of industrial applications, however, have led to concerns regarding their potential impact on human and environmental health. The aquatic environment is particularly at risk of exposure to ENPs, as it acts as a sink for most environmental contaminants. This paper critically evaluates what is currently known about sources and discharge of ENPs to the aquatic environment and how the physicochemical characteristics of ENPs affect their fate and behaviour and thus availability for uptake into aquatic organisms, and assesses reported toxicological effects. Having reviewed the ecotoxicological information, the conclusion is that whilst there are data indicating some nanoparticles have the potential to induce harm in exposed aquatic organisms, there is insufficient evidence for harm, for known/modelled environmental concentrations for almost all ENPs considered. This conclusion, however, must be balanced by the fact that there are significant gaps in our understanding on the fate and behaviour of ENPs in the aquatic environment. Greater confidence in the assessments on ENP impacts in aquatic systems to enable effective comparisons across studies urgently requires more standardised approaches for ENP hazard identification, and critically, more thorough characterisations on the exposed particles. There is also an urgent need for the advancement of tools and techniques that can accurately quantify and visualise uptake of nanoparticles into biological tissues.
Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment there is much uncertainty on exposure because of a fundamental lack of understanding and data regarding the fate, behavior and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO 2 ), and titanium dioxide (TiO 2 ) from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations measured using a wide range of analytical methods. Definitive uptake from the water column and localization of TiO 2 NPs in gills was demonstrated for the first time using coherent anti-Stokes Raman Scattering (CARS) microscopy. Zinc concentrations in zebrafish, and titanium in trout did not differ in exposed fish, compared with controls. Significant uptake of cerium occurred in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3µm) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.