Featured Application: Virtual reality headsets and controllers with wireless connection.Abstract: In order to enhance the user experience of virtual reality (VR) devices, multi-user VR environments and wireless connections should be considered for next-generation VR devices. Wireless local area network (WLAN)-based wireless communication devices are popular consumer devices with high throughput and low cost using unlicensed bands. However, the use of WLANs may cause delays in packet transmission, owing to their distributed nature while accessing the channel. In this paper, we carefully examine the feasibility of wireless VR over WLANs, and we propose an efficient wireless multiuser VR communication architecture, as well as a communication scheme for VR. Because the proposed architecture in this paper utilizes multiple WLAN standards, based on the characteristics of each set of VR traffic, the proposed scheme enables the efficient delivery of massive uplink data generated by multiple VR devices, and provides an adequate video frame rate and control frame rate for high-quality VR services. We perform extensive simulations to corroborate the outstanding performance of the proposed scheme.
To support a massive number of connected cars, a novel channel access scheme for next-generation vehicle-to-anything (V2X) systems is proposed in this paper. In the design of the proposed scheme, two essential aspects are carefully considered: backward compatibility and massive V2X support. Since IEEE 802.11p-based V2X networks are already being deployed and used for intelligent transport systems, next-generation V2X shall be designed considering IEEE 802.11p-based V2X networks to provide backward compatibility. Since all future cars are expected to be equipped with a V2X communication device, a dense V2X communication scenario will be common and massive V2X communication support will be required. In the proposed scheme, IEEE 802.11-based extension is employed to provide backward compatibility and the emerging IEEE 802.11ax standard-based orthogonal frequency-division multiple access is adopted and extended to provide massive V2X support. The proposed scheme is further extended with a dedicated V2X channel and a scheduled V2X channel access to ensure high capacity and low latency to meet the requirements of the future V2X communication systems. To demonstrate the performance of the proposed scheme thoroughly and rigorously, the proposed scheme is mathematically analyzed using a Markov model and extensive simulations are performed. In the dense V2X communication networks of the future, the proposed V2X communication scheme will provide high performance and reliability.
As Intelligent Transport System (ITS) applications are diversified and amount of ITS data increases, high throughput and reliability are required in next-generation V2X communications. In order to meet such increased throughput and reliability requirements, IEEE 802.11bd, the next-generation V2X communication standard, has commenced standard development. One of the main features of IEEE 802.11bd is a 20-MHz bandwidth transmission. In this paper, a novel wide-bandwidth channel access scheme in next-generation Wireless Local Area Network (WLAN)-based vehicular communications is proposed. The proposed scheme is designed to provide fairness with other ITS devices and channel efficiency considering adjacent channel interference. By using the proposed scheme, through extensive simulations, it is verified that, while satisfying the fairness requirement with other ITS devices, the channel access delay of wide-bandwidth packet transmission can be optimized.
Featured Application: IoT devices with wireless LAN (WLAN) communication.Abstract: In this paper, we propose a delay-and power-efficient, multi-user, low-power wireless local area network (WLAN) communication scheme for Internet of Things (IoT) WLAN devices. Extremely low-power operation is one of the key requirements of emerging IoT devices. However, the current duty-cycle-based power saving approach may incur large access delay times owing to the trade-offs between the power consumption and the access delay. In order to reduce this delay and enhance the power-saving performance, wake-up receiver-based schemes have been proposed. However, because wake-up receiver-based schemes do not consider multiuser operation in dense communication environments, large delays are inevitable in the case of multiuser operation. In order to provide extremely low-power operation and under 1-mW standby power with reduced delay, we employed the optimized multiuser transmission scheduling of IEEE 802.11ax in the proposed scheme and proper enhanced distributed channel access (EDCA) parameter settings. This is with the aim to reduce the delay caused by long wake-up times, and to avoid collisions caused by simultaneous transmission in uplink multiuser scenario. By using the proposed scheme, simultaneous IoT communication with multiple mobile IoT devices is possible while providing low-power operation. Simulation results verified the outstanding delay performance of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.