We conducted a phylogeographic analysis of the strictly aquatic and critically endangered Central American river turtle, Dermatemys mawii, as part of a conservation management program for the species. We sampled 238 individuals from 15 different localities throughout the species range. Using sequence fragments from the mtDNA Cyt b and ND4 genes, we identified 16 different haplotypes. Overall, our results reveal a signal of phylogeographic structure throughout the range, which appears to have been secondarily blurred by extensive gene flow. Notably, this also applies to genetic structuring across three major hydrological basins that pose biogeographic breaks in other aquatic taxa. Divergence times of mtDNA haplotypes in D. mawii suggest that the main lineages split in the Pliocene-Pleistocene (3.73-0.227 MA) and demographic tests indicate that the species has undergone drastic demographic size fluctuations since this time period. One ancient haplotype (1D) was found to exhibit sequence divergence of up to 2% from other haplogroups. Divergence of this magnitude is indicative of species level differentiation in other turtle genera. Haplotype 1D was found in only two localities, Sarstun and Salinas, but specimens with other haplotypes were also found in those localities. It is not known whether the individuals with the 1D haplotype interbreed with non-1D individuals. Our results suggest that human activity, such as harvesting and long distance transport of animals, may have influenced the current patterns of genetic diversity. For more than 2000 years, D. mawii has been consumed by people from Middle American cultures, and the archeological record contains strong evidence that the Mayans transported animals between villages and far away from their natural distribution range. Therefore, the large-scale pattern of haplotype sharing even across hydrological barriers, the observed low haplotype diversity in some populations and the contemporary absence of a pronounced phylogeographic pattern is likely due to a combination of population expansions, gene flow, extensive human-mediated-movements and recent bottlenecks resulting from over-harvesting.
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non‐detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non‐governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer‐reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non‐detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio‐temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large‐scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.
During a camera trap survey conducted in Guatemala in the 2019 dry season, we documented a jaguar killing an ocelot at a waterhole with high mammal activity. During severe droughts, the probability of aggressive interactions between carnivores might increase when fixed, valuable resources such as water cannot be easily partitioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.