Breast cancer must be addressed by a multidisciplinary team aiming at the patient’s comprehensive treatment. Recent advances in science make it possible to evaluate tumor staging and point out the specific treatment. However, these advances must be combined with the availability of resources and the easy operability of the technique. This study is aimed at distinguishing and classifying benign and malignant cells, which are tumor types, from the data on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset by applying data mining classification and clustering techniques with the help of the Weka tool. In addition, various algorithms and techniques used in data mining were measured with success percentages, and the most successful ones on the dataset were determined and compared with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.