BackgroundClinical experts’ cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment.MethodsWe used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants.ResultsThe following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners’ perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases.ConclusionThe cognitive strategies to deal with decision complexity found in this study have important implications for design future decision support systems for the management of complex patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12911-015-0221-z) contains supplementary material, which is available to authorized users.
Summary Background Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. Objective The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on infectious disease domain. The measurement model was adapted and modified to healthcare domain. Methods Three clinical Infectious Disease teams were observed, audio-recorded and transcribed. Each team included an Infectious Diseases expert, one Infectious Diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding process and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen’s kappa. Results The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. Conclusion The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.
Background-Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts.Objective-The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks.Method-After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed.Results-We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb.Conclusion-Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information.Application-Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.