Comparisons of five morphological characters, 12 enzyme electrophoresis profiles, and Wolbachia pipientis infection rates were used to characterize populations of members of the Culex pipiens L. complex in California and South Africa. In South Africa, male phallosome DV/D ratio, male maxillary palp index, branching of siphonal seta 1a, the enzyme locus Mdhp-1, and W. pipientis infection rates proved highly diagnostic for separating Culex quinquefasciatus from Cx. pipiens phenotypes. In Johannesburg, where sympatric members of the Cx. pipiens complex were analyzed as one population, a significant Wahlund Effect was observed in the enzyme loci such as Ao, 6-Pgdh, Mdh-2, and Pgm. In California, all populations of the Cx. pipiens complex were in Hardy Weinberg equilibrium at all polymorphic enzyme loci examined. Additionally, in California, all populations had similar W. pipientis infection rates and appeared morphologically identical (except for DV/D ratio, in extreme north and south). These findings indicate that in South Africa, Cx. pipiens and Cx. quinquefasciatus remain as genetically distinct populations and behave as separate species. Conversely, in California, there is considerable genetic introgression between Cx. pipiens and Cx. quinquefasciatus, and they behave as a single species.
In May 2001 a sample of Culex pipiens pipiens variety molestus Forskål from Marin County, California, collected as larvae and reared to adults, was found to show reduced resmethrin and permethrin knock-down responses in bottle bioassays relative to a standard susceptible Cx. pipiens quinquefasciatus Say colony (CQ1). Larval susceptibility tests, using CQ1 as standard susceptible, indicated that the Marin mosquitoes had LC50 resistance ratios of 18.3 for permethrin, 12 for deltamethrin and 3.3 for pyrethrum. A colony of Marin was established and rapidly developed higher levels of resistance in a few generations after exposure to permethrin as larvae. These selected larvae were shown to cross-resist to lambda-cyhalothrin as well as to DDT. However, adult knock-down time in the presence of permethrin, resmethrin and pyrethrum was not increased after increase in tolerance to pyrethroids as larvae. Partial and almost complete reversion to susceptibility as larvae was achieved with S, S, S-tributylphosphorotrithioate and piperonyl butoxide (PBO), respectively, suggesting the presence of carboxylesterase and P450 monooxygenase mediated resistance. Insensitive target site resistance (kdr) was also detected in some Marin mosquitoes by use of an existing PCR-based diagnostic assay designed for Cx. p. pipiens L mosquitoes. Carboxylesterase mediated resistance was supported by use of newly synthesized novel pyrethroid-selective substrates in activity assays. Bottle bioassays gave underestimates of the levels of tolerance to pyrethroids of Marin mosquitoes when compared with mortality rates in field trials using registered pyrethroid adulticides with and without PBO. This study represents the first report of resistance to pyrethroids in a feral population of a mosquito species in the USA.
Studies aimed at monitoring the spread of knockdown resistance to pyrethroids (kdr) in time and space are particularly useful for detecting barriers to gene flow among the chromosomal and molecular forms of Anopheles gambiae. We used a recently developed polymerase chain reaction assay to estimate changes in kdr frequency that occurred in several mixed-form populations from Mali, West Africa, in the past decade. We found that the kdr allele significantly increased in frequency in most populations but was still absent from the M molecular form. Importantly, within the S molecular form, kdr was detected for the first time in the Bamako chromosomal form. These results provide important insights on the patterns of spread and emergence of pyrethroid knockdown resistance in West Africa.
Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of An. gambiae is genetically distinct from the other recognized forms within the taxon Anopheles gambiae sensu stricto. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure.
Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populations for cypermethrin, flumethrin and deltamethrin. Esterase activity did not have a significant correlation with SP´s resistance. However a significant correlation (p<0.01) was found between the presence of the sodium channel mutation, and resistance to SP´s as measured by PASA and LPT respectively. Just over half the populations (16/28) were cross-resistant to flumethrin, deltamethrin and cypermethrine, 21.4% of the samples (6/28) were susceptible to all of the three pyrethroids 10.7 of the samples (3/28) were resistant to flumethrin, 3.4 of the samples (1/28) were resistant to deltamethrin only and 7.1% (2/28) were resistant to flumethrin and deltamethrin. The presence of the kdr mutation correlates with resistance to the SP´s as a class. Target site insensitivity is the major mechanism of resistance to SP´s in Mexican R. microplus field strains, involving the presence of a sodium channel mutation, however, esterase-based, other mutations or combination of mechanisms can also occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.