The onset of the West African monsoon (WAM) marks a vital time for local and regional stakeholders. While the seasonal progression of monsoon winds and the related migration of precipitation from the Guinea Coast toward the Sudan/Sahel is apparent, there exist contrasting man-made definitions of what the WAM onset means. Broadly speaking, onset can be analyzed regionally, locally, or over a designated intermediate scale. There are at least 18 distinct definitions of the WAM onset in publication, with little work done on comparing observed onset from different definitions or comparing onset realizations across different datasets and resolutions. Here, nine definitions have been calculated using multiple datasets of different metrics at different resolutions. It is found that mean regional onset dates are consistent across multiple datasets and different definitions. There is low interannual variability in regional onset, suggesting that regional seasonal forecasting of the onset provides few benefits over climatology. In contrast, local onsets show high spatial, interannual, and interdefinition variability. Furthermore, it is found that there is little correlation between local onset dates and regional onset dates across West Africa, implying a disharmony between regional measures of onset and the experience on a local scale. The results of this study show that evaluation of seasonal monsoon onset forecasts is far from straightforward. Given a seasonal forecasting model, it is possible to simultaneously have a good and a bad prediction of monsoon onset simply through selection of the onset definition and observational dataset used for comparison.
Extreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows Clausius–Clapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics.
Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.