Several 4- or 5-monosubsituted and 4,5-disubstituted 1,2,3-triazole analogues of the anti-HIV-1 lead compound [1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D- ribofuranosyl]thymine]-3'-spiro-5"-(4"-amino-1",2"-oxathiole 2",2"-dioxide) (TSAO-T) have been prepared and evaluated as inhibitors of HIV-1-induced cytopathicity. These analogues have been prepared by 1,3-diplar cycloaddition of [2,5-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]- 3-spiro-5'-(4'-amino- and 4'-(N-acetylamino)-1',2'-oxathiole 2',2'-dioxide) (TSAO) azides to various substituted acetylenes. Several 4- and 5-substituted 1,2,3-triazole-TSAO analogues proved superior to the unsubstituted derivative by 1-2 orders of magnitude. In particular the 5-substituted amido-, (methylamido)-, and (dimethylamido)-1,2,3-triazole derivatives of TSAO were endowed with potent anti-HIV-1 activity (50% effective concentration: 0.056-0.52 microM). They show a similar resistance spectrum as previously noted for TSAO-T and related derivatives.
The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.
Introduction: The safety and efficacy of bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of the transforming growth factor b (TGF-b) receptor II (a TGF-b "trap") fused to a human immunoglobulin G1 antibody blocking programmed deathligand 1 (PD-L1), was evaluated in patients with advanced NSCLC.Methods: This expansion cohort of NCT02517398, an ongoing, phase 1, open-label trial, includes 80 patients with advanced NSCLC that progressed after platinum doublet therapy or after platinum-based adjuvant or neoadjuvant treatment and those who also have not received previous immunotherapy. Patients were randomized at a one-to-one ratio to receive either bintrafusp alfa 500 mg or the recommended phase 2 dosage of 1200 mg every 2 weeks. The primary end point was the best overall response (by Response Evaluation Criteria in Solid Tumors 1.1 as adjudicated by independent review committee) and was assessed by the objective response rate (ORR).Results: A total of 80 patients were randomized to receive bintrafusp alfa 500 or 1200 mg (n ¼ 40 each). Median follow-up was 51.9 weeks (IQR, 19.6-74.0). The ORR in all patients was 21.3% (17 of 80). The ORR was 17.5% (seven of 40) and 25.0% (10 of 40) for the 500 mg dose and the 1200 mg dose (recommended phase 2 dose), respectively. At the 1200 mg dose, patients with PD-L1-positive and PD-L1-high (80% expression on tumor cells) had ORRs of 36.0% (10 of 27) and 85.7% (six of seven), respectively. Treatment-related adverse events occurred in 55 of the 80 patients (69%) and were graded as greater than or equal to 3 in 23 of the 80 patients (29%). Of the 80 patients, eight (10%) had a treatment-related adverse event that led to treatment discontinuation; no treatment-related deaths occurred.Conclusions: Bintrafusp alfa had encouraging efficacy and manageable tolerability in patients with NSCLC previously treated with platinum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.