The tumor suppressor p53 has been implicated in gamma irradiation-induced apoptosis. To investigate possible consequences of wild-type p53 loss in leukemia, we studied the effect of a single dose of gamma irradiation upon p53-deficient human T-ALL (acute lymphoblastic leukemia) CCRF ± CEM cells. Exposure to 3 ± 96 Gy caused p53-independent cell death in a dose and time-dependent fashion. By electron microscopic and other criteria, this cell death was classified as apoptosis. At low to intermediate levels of irradiation, apoptosis was preceded by accumulation of cells in the G2/M phase of the cell division cycle. Expression of Bcl-2 and Bax were not detectably altered after irradiation. Expression of the temperature sensitive mouse p53 V135 mutant induced apoptosis on its own but only slightly increased the sensitivity of CCRF ± CEM cells to gamma irradiation. Thus, in these, and perhaps other leukemia cells, a p53-and Bcl-2/Bax-independent mechanism is operative that efficiently senses irradiation effects and translates this signal into arrest in the G2/M phase of the cell cycle and subsequent apoptosis.
The effect of herpes virus infection on human dermal microvascular endothelial cells and herpes-virus-1-infected peripheral blood mononuclear cells on human dermal microvascular endothelial cells was studied as a model of herpes-associated erythema multiforme. After infection of human dermal microvascular endothelial cells with native herpes virus and overnight culture, 60%--90% of human dermal microvascular endothelial cells showed cytopathic effects. HLA class I molecules and CD31 (PECAM-1) surface expression in herpes-virus-infected endothelial cells were substantially downregulated, whereas CD54 (ICAM-1) remained unchanged. Cocultivation with herpes-virus-1-infected peripheral blood mononuclear cells left characteristic plaques on the human dermal microvascular endothelial cell monolayer; however, very few human dermal microvascular endothelial cells (1%--3%) were infected. Adhesion molecule expression of human dermal microvascular endothelial cells cocultivated with herpes-virus-infected peripheral blood mononuclear cells demonstrated a 5-fold increase in CD54 expression, a 2-fold increase in HLA class I expression, but no change of CD31 by fluorescence-activated cell sorter analysis. Incubation of human dermal microvascular endothelial cells with ultraviolet-C irradiated herpes-virus-infected peripheral blood mononuclear cells had no effect on morphology or adhesion molecule expression levels. Changes of adhesion molecule expression by direct infection or cocultivation with peripheral blood mononuclear cells (with native and ultraviolet-C inactivated herpes virus infection) were also documented at the mRNA level. Adhesion assays demonstrated an increased binding of herpes-virus-infected peripheral blood mononuclear cells versus noninfected peripheral blood mononuclear cells to noninfected human dermal microvascular endothelial cells. Our results suggest that incubation of herpes-virus-infected peripheral blood mononuclear cells with human dermal microvascular endothelial cells induces significant upregulation of CD54 and major histocompatibility complex class I molecules in the surrounding noninfected human dermal microvascular endothelial cells, which is associated with an increased binding of peripheral blood mononuclear cells. Our in vitro findings may serve as a model for herpes-associated erythema multiforme possibly explaining the dermal inflammatory reaction seen in that condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.