Petiveria alliacea L. is an herb used in traditional medicine in Mexico and its roots have been studied to treat pain. However, until now, the antinociceptive properties of the leaves have not been investigated, being the main section used empirically for the treatment of diseases. For this reason, this study aimed to evaluate the antinociceptive and toxoicological activity of various extracts (aqueous, hexanic, and methanolic) from P. alliacea L. leaves in NIH mice and to perform an in silico analysis of the phytochemical compounds. Firstly, the antinociceptive effect was analyzed using the formalin model and the different doses of each of the extracts that were administered orally to obtain the dose–response curves. In addition, acute toxicity was determined by the up and down method and serum biochemical analysis. Later, the phytochemical study of extracts was carried out by thin layer chromatography (TLC) and visible light spectroscopy, and the volatile chemical components were analyzed by gas chromatography-mass spectrometry (GC/MS). Moreover, the most abundant compounds identified in the phytochemical study were analyzed in silico to predict their biological activity (PASSonline) and toxicology (OSIRIS Property Explorer). As a result, it was known that all extracts at doses from 10 to 316 mg/kg significantly reduced the pain response in both phases of the formalin model, with values of 50–60% for the inflammatory response. The toxicological studies (DL50) exhibited that all extracts did not cause any mortality up to the 2000 mg/kg dose level. This was corroborated by the values in the normal range of the biochemical parameters in the serum. Finally, the phytochemical screening of the presence of phenolic structures (coumarins, flavonoids) and terpenes (saponins and terpenes) was verified, and the highest content was of a lipid nature, 1.65 ± 0.54 meq diosgenin/mL in the methanolic extract. A total of 54 components were identified, 11 were the most abundant, and only four (Eicosane, Methyl oleate, 4-bis(1-phenylethyl) phenol, and Ethyl linolenate) of them showed a probability towards active antinociceptive activity in silico greater than 0.5. These results showed that the P. alliacea L. leaf extract possesses molecules with antinociceptive activity.
In the present study, the hexane, acetone and methanol extracts of stem, branches and roots from Crotalaria longirostrata were evaluated for their antifungal activity against Fusarium sp., Fusarium verticillioides and Aspergillus flavus. The variables analyzed were inhibition halos, mycelial growth inhibition, sporulation and minimum inhibitory concentration. Phytochemical analysis revealed the presence of saponins, coumarins, anthrones, anthraquinones, flavonoids and alkaloids on different organic extracts. The hexane extract showed zones of inhibition between 6.3 and 10.5 mm. The mycelia growth and sporulation of A. flavus were reduced to 90% with methanol extract. The minimum inhibitory concentration values obtained with hexane extracts were 6.75 mg mL-1 and with methanol extracts were 50 and 25 mg mL-1 for Fusarium strains. This is the first study reporting of phytochemical composition and biological activity of C. longirostrata that could be used as a natural alternative to control in vitro of certain important pathogenic fungi.
Fusarium are considered as the major plant pathogen fungi, that cause the majority of soil-borne diseases to more than 100 plant species in the world, including maize. Thus, there are emerging demands of biocontrol reagents, and Crotalaria longirostrata showed fungicidal activity. The C. longirostrata branch extract was phytochemically characterized and evaluated for efficacy for the control of Fusarium wilt in maize. The application of the extract reduced the percentage of disease incidence significantly caused by Fusarium verticillioides from 70.4% to 40.12% as compared to non-treated plants, and evenly the disease severity was reduced from 40.15% to 29.46%. The phytochemical components of the extract were cinnamic acids (caffeic acid and ferulic acid) and phenolic acid (gallic acid). Furthermore, multiple structures were detected through mass spectrometry such as: phenols, alkaloids, esters, terpene, ketones, and amides. The bioautography assay showed that to separate the compounds of C. longirostrata branch extract causes it's the loss of fungicidal activity. This is due to the synergy or additive interactions of secondary metabolites present in the raw extract. Our results suggest that the application of C. longirostrata branch extract is a promising strategy to be applied to the soil as a preventive treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.