We demonstrate some procedures in the statistical computing environment R for obtaining maximum likelihood estimates of the parameters of a psychometric function by fitting a generalized nonlinear regression model to the data. A feature for fitting a linear model to the threshold (or other) parameters of several psychometric functions simultaneously provides a powerful tool for testing hypotheses about the data and, potentially, for reducing the number of parameters necessary to describe them. Finally, we illustrate procedures for treating one parameter as a random effect that would permit a simplified approach to modeling stimulus-independent variability due to factors such as lapses or interobserver differences. These tools will facilitate a more comprehensive and explicit approach to the modeling of psychometric data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.