Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration. A biomimetic injectable hydrogel using amnion membrane (AM) was developed which can self-assemble in situ and retain the stem cells at the target site. In the present study, we evaluated the efficacy of intraarticular injections of AM hydrogels with and without ADSCs in reducing inflammation and cartilage degeneration in a collagenase-induced OA rat model. A week after the induction of OA, rats were treated with control (phosphate-buffered saline), ADSCs, AM gel, and AM-ADSCs. Inflammation and cartilage regeneration was evaluated by joint swelling, analysis of serum by cytokine profiling and Raman spectroscopy, gross appearance, and histology. Both AM and ADSC possess antiinflammatory and chondroprotective properties to target the sites of inflammation in an osteoarthritic joint, thereby reducing the inflammation-mediated damage to the articular cartilage. The present study demonstrated the potential of AM hydrogel to foster cartilage tissue regeneration, a comparable regenerative effect of AM hydrogel and ADSCs, and the synergistic antiinflammatory and chondroprotective effects of AM and ADSC to regenerate cartilage tissue in a rat OA model.
Inflammation leads to chondrocyte senescence and cartilage degeneration, resulting in osteoarthritis (OA). Adipose‐derived stem cells (ADSCs) exert paracrine effects protecting chondrocytes from degenerative changes. However, the lack of optimum delivery systems for ADSCs limits its use in the clinic. The use of extracellular matrix based injectable hydrogels has gained increased attention due to their unique properties. In the present study, we developed hydrogels from amnion tissue as a delivery system for ADSCs. We investigated the potential of amnion hydrogel to maintain ADSC functions, the synergistic effect of AM with ADSC in preventing the catabolic responses of inflammation in stimulated chondrocytes. We also investigated the role of Wnt/β-catenin signaling pathway in IL-1β induced inflammation in chondrocytes and the ability of AM-ADSC to inhibit Wnt/β-catenin signaling. Our results showed that AM hydrogels supported cell viability, proliferation, and stemness. ADSCs, AM hydrogels and AM-ADSCs inhibited the catabolic responses of IL-1β and inhibited the Wnt/β-catenin signaling pathway, indicating possible involvement of Wnt/β-catenin signaling pathways in IL-1β induced inflammation. The results also showed that the synergistic effect of AM-ADSCs was more pronounced in preventing catabolic responses in activated chondrocytes. In conclusion, we showed that AM hydrogels can be used as a potential carrier for ADSCs, and can be developed as a potential therapeutic agent for treating OA.
IVD, consists of three main parts; (i) the cartilage endplate, (ii) annulus fibrosus, and (iii) nucleus pulposus. These integral components allow spine flexibility and locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.