Recent discovery of endophytic strains of Bacillus thuringiensis significantly improves the knowledge on its ecology. It also may be a new source for the isolation of insecticidal strains. This report shows the characterization of two endophytic, highly insecticidal strains of B. thuringiensis. Strains LBIT-1250L and LBIT-1251P were isolated from lavender and Poinsettia sap, respectively. Their parasporal crystals were very similar in morphology to those shown by serotypes israelensis and kurstaki, respectively. Bioassays on Aedes aegypti fourth instar larvae and on Manduca sexta first instar larvae, respectively, showed significantly higher levels of toxicity than those of their standard counterparts, IPS-82 (israelensis) and HD-1 (kurstaki) strains, respectively. Characterization of both strains included the sequencing of flagellin (hag) gene, plasmid and Bc Rep-PCR patterns, and crystal protein content. All four characterization features indicated that LBIT1250L is highly related to the IPS-82 standard (serotype H-14: israelensis); while the LBIT-1251P was highly related to the HD-1 standard (serotype H-3a3b3c kurstaki). These results indicate that endophytic strains of B. thuringiensis may be a new source of potential insecticidal strains and opens more in-depth studies about the role of this bacterium in such a specialized habitat.
Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
Using fluorescence in situ hybridization (FISH) with probe pScT7, three different 5S rDNA loci were detected in the satellite of rye chromosome 1R (5SDna-R1) and in the short arms of chromosomes 3R (5SDna-R3) and 5R (5SDna-R2) respectively. All three loci showed polymorphism for the hybridization signal intensity. In order to determine the localization of these rye 5S rDNA multigene loci with higher precision within the corresponding chromosome arms, the probe pScT7 was physically mapped by FISH in relation to the following five translocations (Wageningen Tester Set): T850W (1RS/4RL), T248W (1RS/6RS), T273W (1RS/5RL), T305W (2RS/5RS) and T240W (3RS/5RL). Accurate physical maps of the translocation breakpoints had previously been made using electron microscope analysis of spread pachytene synaptonemal complexes of heterozygotes for the different translocations. The results indicate that locus 5SDna-R3 is located between the breakpoint of translocation T240W and the telomere, whereas locus 5SDna-R2 is located between the breakpoint of translocation T305W and the centromere, the hybridization of probe pScT7 on T305W translocated chromosomes demonstrating the complex nature of this translocation. On the other hand, the simultaneous detection of probes pScT7 and pTA71 (18S-5.8S-26S rDNA) with two different fluorochromes, indicated that the breakpoints of translocations T850W and T248W are located between loci Nor-R1 and 5SDna-R1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.