The crystallographic structure of acetyl-Cys-Val-Ile-selenoMet-COOH and alpha-hydroxyfarnesylphosphonic acid (alphaHFP) complexed with rat farnesyl protein transferase (FPT) (space group P61, a = b = 174. 13 A, c = 69.71 A, alpha = beta = 90 degrees, gamma = 120 degrees, Rfactor = 21.8%, Rfree = 29.2%, 2.5 A resolution) is reported. In the ternary complex, the bound substrates are within van der Waals contact of each other and the FPT enzyme. alphaHFP binds in an extended conformation in the active-site cavity where positively charged side chains and solvent molecules interact with the phosphate moiety and aromatic side chains pack adjacent to the isoprenoid chain. The backbone of the bound CaaX peptide adopts an extended conformation, and the side chains interact with both FPT and alphaHFP. The cysteine sulfur of the bound peptide coordinates the active-site zinc. Overall, peptide binding and recognition appear to be dominated by side-chain interactions. Comparison of the structures of the ternary complex and unliganded FPT [Park, H., Boduluri, S., Moomaw, J., Casey, P., and Beese, L. (1997) Science 275, 1800-1804] shows that major rearrangements of several active site side chains occur upon substrate binding.
Ras proteins are small GTP-binding proteins which are critical for cell signaling and proliferation. Four Ras isoforms exist: Ha-Ras, N-Ras, Ki-Ras4A, and Ki-Ras4B. The carboxyl termini of all four isoforms are post-translationally modified by farnesyl protein transferase (FPT). Prenylation is required for oncogenic Ras to transform cells. Recently, it was reported that Ki-Ras4B is also an in vitro substrate for the related enzyme geranylgeranyl protein transferase-1 (GGPT-1) (James, G. L., Goldstein, J. L., and Brown, M. S. (1995) J. Biol. Chem. 270, 6221-6226). In the current studies, we compared the four isoforms of Ras as substrates for FPT and GGPT-1. The affinity of FPT for Ki-Ras4B (K m ؍ 30 nM) is 10 -20-fold higher than that for the other Ras isoforms. Consistent with this, when the different Ras isoforms are tested at equimolar concentrations, it requires 10 -20-fold higher levels of CAAX-competitive compounds to inhibit Ki-Ras4B farnesylation. Additionally, we found that, as reported for Ki-Ras4B, N-Ras and Ki-Ras4A are also in vitro substrates for GGPT-1. Of the Ras isoforms, N-Ras is the highest affinity substrate for GGPT-1 and is similar in affinity to a standard GGPT-1 substrate terminating in leucine. However, the catalytic efficiencies of these geranylgeranylation reactions are between 15-and 140-fold lower than the corresponding farnesylation reactions, largely reflecting differences in affinity. Carboxyl-terminal peptides account for many of the properties of the Ras proteins. One interesting exception is that, unlike the full-length N-Ras protein, a carboxylterminal N-Ras peptide is not a GGPT-1 substrate, raising the possibility that upstream sequences in this protein may play a role in its recognition by GGPT-1. Studies with various carboxyl-terminal peptides from Ki-Ras4B suggest that both the carboxyl-terminal methionine and the upstream polylysine region are important determinants for geranylgeranylation. Furthermore, it was found that full-length Ki-Ras4B, but not other Ras isoforms, can be geranylgeranylated in vitro by FPT. These findings suggest that the different distribution of Ras isoforms and the ability of cells to alternatively process these proteins may explain in part the resistance of some cell lines to FPT inhibitors.Ras proteins are small GTP-binding proteins that play critical roles in cell signaling, differentiation, and proliferation (1). Ras signaling is regulated by a GDP-GTP cycle. Binding of GTP to Ras is required for its productive interaction with Raf-1 and other downstream effector proteins (2). Ras proteins are activated by nucleotide exchange factors such as SOS-1 which stimulate the exchange of GDP for GTP. The lifetime of activated Ras is limited by its intrinsic GTPase activity, which hydrolyzes GTP to GDP. GTPase-activating proteins, such as p120 Ras-GAP and NF-1, stimulate this activity and thereby facilitate inactivation of Ras proteins (2). Transforming mutations of Ras which decrease the rate of GTP hydrolysis result in its constitutive activation. S...
Oncogenic forms of Ras proteins are associated with a broad range of human cancers including an estimated 90% of all colon cancers (1). Ras proteins undergo a complex series of posttranslational processing events, which have been defined over the past several years (2, 3). The initial post-translational event is the transfer of the 15-carbon isoprene farnesyl from farnesyl pyrophosphate to a Cys residue (Cys 186 in Ha-Ras) in the conserved carboxyl-terminal "CAAX" motif (where "A" is an aliphatic residue) present in all Ras proteins (4, 5). Studies employing site-directed mutagenesis (6, 7) or inhibitors of hydroxymethylglutaryl-CoA reductase (8), the rate-limiting enzyme in isoprenoid biosynthesis, demonstrated that isoprenylation is required for Ras proteins to become membraneassociated and to induce cellular transformation. The farnesyl protein transferase (FPT) 1 that catalyzes this reaction has been purified (9) and cDNA clones for its ␣ and  subunits isolated (10 -12).A number of other cellular proteins are also isoprenylated on a Cys residue near their COOH terminus (13,14). These include other substrates for FPT, such as the nuclear lamins (15). However, the majority of cellular isoprenylated proteins are modified with geranylgeranyl, a 20-carbon isoprene. Two distinct geranylgeranyl protein transferases (GGPT I and II) have been identified (16,17) and cDNA clones for their ␣ and  subunits isolated (18,19). GGPT I and FPT share a common ␣ subunit (18,20).The primary determinant for recognition of protein substrates by the isoprenyl transferases is the substrate's carboxyl-terminal amino acid sequence. Proteins ending in Cys-X-XSer (or Met) are preferred substrates for FPT, while proteins terminating in Cys-X-X-Leu are preferred substrates for GGPT I (21, 22). Substitution of leucine for serine at the COOH terminus of the Ha-Ras CAAX box (Ser 189 3 Leu) makes this protein a substrate for geranylgeranylation (rather than farnesylation) both in vitro and in cells (23). The different substrate specificities of FPT and GGPT-1 are likely mediated by their distinct  subunits. GGPT II utilizes protein substrates terminating in Cys-Cys or Cys-X-Cys (17,24).A number of inhibitors of FPT have been reported over the past several years (25). The design of CAAX peptidomimetics (26 -29) has resulted in potent and selective FPT inhibitors capable of blocking Ras processing in cells. These compounds have shown considerable promise as antitumor agents based on their ability to inhibit cellular transformation induced by oncogenic Ras proteins (26,27) and the growth of Ras-dependent
Interleukin 10 (IL-10), which was first discovered by its ability to inhibit the synthesis of various cytokines, most notably gamma interferon, from Th1 helper cells, displays pleiotropic immunoregulatory properties. Human and murine IL-10 have a high amino acid sequence identity (ca. 73%) which includes the conservation of all four cysteine residues in human IL-10 and the first four out of five cysteine residues for murine IL-10. Chemical analysis was used to determine that both recombinant human and recombinant murine IL-10 contain two disulfide bonds. The disulfide pairs for each were determined by mass spectrometric and reversed-phase HPLC analysis of trypsin-derived polypeptide fragments. The disulfide bond assignments for both species were similar in that the first cysteine residue in the sequence paired with the third and the second paired with the fourth. The fifth cysteine in murine IL-10 was determined by chemical modification to be unpaired. Far-UV circular dichroism analysis indicated that the secondary structure of recombinant human and murine IL-10 are composed of ca. 60% alpha-helix. Reduction of the disulfide bonds structurally destabilized the protein and led to a structure containing only 53% alpha-helix. The reduced protein displayed no in vitro biological activity in a mast cell proliferation assay. These studies indicate that IL-10 is a highly alpha-helical protein containing two disulfide bonds, either one or both of which are critical for its structure and function. In addition, these properties suggest that this interesting cytokine may belong to the alpha helical cytokine class of hematopoietic ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.