Solid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials. The intrinsic SiPM single photon time resolution (SPTR) was measured with Ketek, HPK, FBK, SensL and Broadcom devices. Also, the best achieved coincidence time resolution (CTR) for these devices was measured with LSO:Ce:Ca of mm3 and mm3 size crystals. The intrinsic SPTR for all devices ranges between 70 ps and 135 ps FWHM when illuminating the entire mm2 or mm2 area. The obtained CTR with LSO:Ce:Ca of mm3 size ranges between 58 ps and 76 ps FWHM for the SiPMs evaluated. Bismuth Germanate (BGO), read out with state of-the-art NUV-HD SiPMs from FBK, achieved a CTR of 158 ps and 277 ps FWHM for mm3 and mm3 crystals, respectively. Other BGO geometries yielded 167 3 ps FWHM for mm3 and 235 5 ps FWHM for mm3 also coupled with Meltmount (n = 1.582) and wrapped in Teflon. Additionally, the average number of Cherenkov photons produced by BGO in each 511 keV event was measured to be 17 3 photons. Based on this measurement, we predict the limits of BGO for ultrafast timing in TOF-PET with Monte Carlo simulations. Plastic scintillators (BC422, BC418), BaF2, GAGG:Ce codoped with Mg and CsI:undoped were also tested for TOF performance. Indeed, BC422 can achieve a CTR of 35 2 ps FWHM using only Compton interactions in the detector with a maximum deposited energy of 340 keV. BaF2 with its fast cross-luminescence enables a CTR of 51 5 ps FWHM when coupled to VUV-HD SiPMs from FBK, with only ∼22% photon detection efficiency (PDE). We summarize the measured CTR of the various scintillators and discuss their intrinsic timing performance.
Abstract:Inorganic scintillators are commonly used as sensors for ionizing radiation detectors in a variety of applications, ranging from particle and nuclear physics detectors, medical imaging, nuclear installations radiation control, homeland security, well oil logging and a number of industrial non-destructive investigations. For all these applications, the scintillation light produced by the energy deposited in the scintillator allows the determination of the position, the energy and the time of the event. However, the performance of these detectors is often limited by the amount of light collected on the photodetector. A major limitation comes from the fact that inorganic scintillators are generally characterized by a high refractive index, as a consequence of the required high density to provide the necessary stopping power for ionizing radiation. The index mismatch between the crystal and the surrounding medium (air or optical grease) strongly limits the light extraction efficiency because of total internal reflection (TIR), increasing the travel path and the absorption probability through multiple bouncings of the photons in the crystal. Photonic crystals can overcome this problem and produce a controllable index matching between the crystal and the output medium through an interface made of a thin nano-structured layer of optically-transparent high index material. This review presents a summary of the works aiming at improving the light collection efficiency of scintillators using photonic crystals since this idea was introduced 10 years ago.
Inorganic scintillators are widely used for fast timing applications in high-energy physics (HEP) experiments, time-of-flight positron emission tomography and time tagging of soft and hard x-ray photons at advanced light sources. As the best coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation decay time it is worth studying fast crossluminescence, for example in BaF 2 which has an intrinsic yield of about 1400 photons/MeV. However, emission bands in BaF 2 are located in the deep-UV at 195 nm and 220 nm, which sets severe constraints on photodetector selection. Recent developments in dark matter and neutrinoless double beta decay searches have led to silicon photomultipliers (SiPMs) with photon detection efficiencies of 20%-25% at wavelengths of 200 nm. We tested state-of-the-art devices from Fondazione Bruno Kessler and measured a best CTR of 51 ± 5 ps full width at half maximum when coupling 2 mm × 2 mm × 3 mm BaF 2 crystals excited by 511 keV electron-positron annihilation gammas. Using these vacuum ultraviolet SiPMs we recorded the scintillation kinetics of samples from Epic Crystal under 511 keV excitation, confirming a fast decay time of 855 ps with 12.2% relative light yield and 805 ns with 84.0% abundance, together with a smaller rise time of 4 ps beyond the resolution of our setup. The total intrinsic light yield was determined to be 8500 photons/MeV. We also revealed a faster component with 136 ps decay time and 3.7% light yield contribution, which is extremely interesting for the fastest timing applications. Timing characteristics and CTR results on BaF 2 samples from different producers and with different dopants (yttrium, cadmium and lanthanum) are given, and clearly show that the the slow 800 ns emission can be effectively suppressed. Such results ultimately pave the way for high-rate ultrafast timing applications in medical diagnosis, range monitoring in proton or heavy ion therapy and HEP.
Time resolution of scintillation-based detectors is becoming continuously more important, both for medical applications, especially in positron emission tomography (PET), and in high energy physics. This article is an initial study on exploiting the fast cross-luminescence emission in the inorganic BaF 2 scintillator with deep ultraviolet-sensitive silicon photomultipliers (SiPMs) from Hamamatsu for precise timing in PET and HEP. Using small BaF 2 pixels optimized for timing read out by these photodetectors with a photon detection efficiency (PDE) of only about 15% in the desired 200 nm emission region, a coincidence time resolution (CTR) of 94 ± 5 ps full width at half maximum (FWHM) is achieved when coupling with air. This figure improves to 78 ± 4 ps FWHM when coupling the BaF 2 crystal with UV transparent optical grease, Viscasil, to the photodetector. This CTR performance obtained with BaF 2 is better than that measured with LYSO:Ce, a commonly used state-of-the-art inorganic scintillator in PET, when coupled to another Hamamatsu photodetector (S13360), having a PDE of 60% at 420 nm, with Meltmount. In view of the prospects in advancing technologies for ultraviolet sensitive SiPMs, with high PDE and single photon time resolution, and further advancements in producing high quality BaF 2 , one could imagine the development of sub-30 ps FWHM time-offlight-PET systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.