Thermoplastic elastomers, prepared by melt blending of natural rubber (NR) and isotactic polypropylene (PP) through a dynamic vulcanization technique, were developed during the later 1970s. However, they have certain drawbacks due to thermal degradation and higher molecular weight of NR. In the study reported here, NR was masticated to different levels prior its addition to isotactic polypropylene to improve the flow properties and to reduce the incompatibility resulting from molecular weight mismatch of NR/PP thermoplastic blends. Mixing energy curves of uncrosslinked blends and those of dynamically vulcanized blends crosslinked using different cure systems were compared. The mixing energy curves of blends containing NR of different molecular weight (M n ) and two grades of PP (injection and film grades) were also compared. Technological and processing properties of the dynamically vulcanized (sulphur and peroxide cure systems) and unvul-canized blends were compared with those of the samples containing unmasticated NR. The results indicated that a number average molecular weight in the range 4 ϫ 10 5 for NR increased the procoessability without significantly affecting the technological properties of NR/PP thermoplastic blends. Among the three cure systems studied Luperox 101 and dicumyl peroxide gave better technological properties than the sulphur-cured samples. Two antioxidants, viz. quinoline (TDQ) and imidazole (MBI) type, were tried in NR/PP blends. It was found that TDQ imparts better aging resistance compared to MBI. The improvement in processability due to the reduction in molecular weight of natural rubber by mastication is more noticeable in the case of peroxide vulcanized blends compared to sulphur vulcanized samples.
Dichlorocarbene-modified styrene-butadiene rubber (SBR) prepared by the alkaline hydrolysis of chloroform using cetyltrimethylammonium bromide as a phase-transfer agent resulted in a product that showed good mechanical properties, excellent flame resistance, solvent resistance, and good thermal stability. The activation energy for this chemical reaction calculated from the time-temperature data on the chemical reaction by the measurement of the percentage of chlorine indicated that the reaction proceeded according to first-order kinetics. The molecular weight of the polymers, determined by gel permeation chromatography, showed that chemical modification was accompanied by an increase in molecular weight. The chemical modification was characterized by proton NMR, FTIR studies, thermogravimetric analysis, and flammability measurement. Proton NMR and FTIR studies revealed the attachment of chlorine through cyclopropyl rings to the double bond of butadiene.
ABSTRACT:The application of rubber seed oil (RSO) and epoxidized RSO (ERSO) as a plasticizer in acrylonitrile butadiene rubber (NBR) was studied using RSO and ERSO with different levels of epoxidation. The results indicated that ERSO could be used as a less leachable and low volatility plasticizer for NBR. The use of ERSO in NBR gave better abrasion resistance whereas the tensile strength and tear strength were comparable to those vulcanizates that contained dioctyl phthalate as a plasticizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.