Several dental materials have been used for core build-up procedures. Most of these materials were not specifically developed for this purpose, but as a consequence of their properties, have found application in core build-up procedures. Improvements in composites and the development of nanocomposites have led to their use as a core build up material due to their superior mechanical properties, optical properties and ease of handling. However it is not clear if they have better mechanical properties than the conventional core build up materials like amalgam, GIC and dual cure composite core build up material. The strength of the core material is very important and this study was undertaken to compare the mechanical properties of materials used for direct core foundations. The differences between the compressive strength and flexural strength of Filtek Z350 nanocomposite with conventional core build up materials like Amalgam, Vitremer GIC and Fluorocore were tested. Cylindrical plexi glass split molds of dimension 6 ± 1 mm [height] x4 ± 1 mm [diameter] were used to fabricate 15 samples of each core material for testing the compressive strength and rectangular plexi glass split molds of dimension 25 ± 1 mm [length] x 2 ± 1 mm[height] x2 ± 1 mm [width] used for fabricating samples for flexural strength. The samples were stored a water bath at 250 °C for 24 h before testing. The samples were tested using a Universal Instron testing machine. The results of the study showed that Fluorocore had the highest compressive strength and flexural strength followed by Filtek Z350 [nanocomposite] Amalgam had the least flexural strength and Vitremer GIC had the least compressive strength. Thus flurocore and nanocomposite are stronger than other core build up materials and hence should be preferred over other conventional core build up materials in extensively damaged teeth.
ABSTRACT:The application of rubber seed oil (RSO) and epoxidized RSO (ERSO) as a plasticizer in acrylonitrile butadiene rubber (NBR) was studied using RSO and ERSO with different levels of epoxidation. The results indicated that ERSO could be used as a less leachable and low volatility plasticizer for NBR. The use of ERSO in NBR gave better abrasion resistance whereas the tensile strength and tear strength were comparable to those vulcanizates that contained dioctyl phthalate as a plasticizer.
The effect of aluminum powder on the properties of natural rubber composites containing high abrasion furnace black (HAF), general purpose furnace black (GPF), acetylene black, china clay and precipitated silica was studied. In all cases the total filler content including aluminum powder is fixed at 40 parts per hundred rubber (phr). Gradual replacement of these fillers by aluminum powder showed a marked increase in thermal conductivity. This increased thermal conductivity of aluminum powder filled composites decreased the vulcanization time and led to uniform curing throughout the material, especially for thick articles. Mechanical properties like tensile strength, tear strength, rebound resilience, heat build-up, hardness, compression set, etc., are comparatively better for these composites. Aluminum powder incorporated vulcanizates also showed good resistance against thermal aging and oxidative degradation. Thus, use of aluminum powder in rubber compounds can lead to energy saving in the vulcanization of thick rubber articles and enhance the service life of such rubber products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.