Fertilizers contain essential nutrients for agricultural growth and development. However, most nitrogen fertilizers are substances with high solubility of ions and are very susceptible to leaching and volatilization. To minimize these losses, an alternative is the creation of a physical barrier around granules. One way is to coat granules with polymers. In the present work urea granules were coated with polyhydroxybutyrate and ethyl cellulose in various conditions in the presence of emulsifiers. The original granules and the final products were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetry, to evaluate the surface morphology, the interaction between the granules and the coating, and the rates of mass change. The rates of urea release in distilled water were measured with a commercial enzyme kit. It is shown that those polymers are effective for coating of granules, leading to reduction of rates of urea dissolution in water.
The objective of the present work was to study the incorporation of starch nanoparticles (SNP) produced by ultrasound in blends of poly(butylene adipate-co-terephthalate) (PBAT) and thermoplastic starch (TPS). The films were produced by extrusion using varying percentages of SNP (1, 2, 3, 4, and 5% w/w). The SNP were prepared in water without the addition of any chemical reagent. The results revealed that ultrasound treatment results in the formation of SNP less than 100 nm in size and of an amorphous character and lower thermal stability and low gelatinization temperature when compared with cassava starch. Scanning electron microscopy (SEM) showed that films presented some starch granules. The relative crystallinity (RC) of films decreases with increasing concentration of SNP. The addition of SNP slightly affected the thermal degradation of the films. The DSC results showed that the addition did not modify the interaction between the different components of the films. Mechanical tests revealed an increase in Young's modulus (36%) and elongation-at-break (35%) with the incorporation of 1% SNP and this concentration reduced the water vapor permeability (53%) and significantly decreased the water absorption of the films, demonstrating that low concentrations of SNP can be used as reinforcement in a polymeric matrix.
The interest of the pharmaceutical industry in lipid drug delivery systems due to their prolonged release profile, biocompatibility, reduction of side effects, and so on is already known. However, conventional methods of preparation of these structures for their use and production in the pharmaceutical industry are difficult since these methods are usually multi-step and involve high amount of organic solvent. Furthermore, some processes need extreme conditions, which can lead to an increase of heterogeneity of particle size and degradation of the drug. An alternative for drug delivery system production is the utilization of supercritical fluid technique. Lipid particles produced by supercritical fluid have shown different physicochemical properties in comparison to lipid particles produced by classical methods. Such particles have shown more physical stability and narrower size distribution. So, in this paper, a critical overview of supercritical fluid-based processes for the production of lipid micro- and nanoparticles is given and the most important characteristics of each process are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.