We report an intensiometric, near-infrared (NIR) fluorescent, genetically encoded calcium ion (Ca 2+ ) indicator (GECI) with excitation and emission maxima at 678 nm and 704 nm, respectively. This GECI, designated NIR-GECO1, enables imaging of Ca 2+ transients in cultured mammalian cells and brain tissue with sensitivity comparable to currently available visible-wavelength GECIs. We demonstrate that NIR-GECO1 opens up new vistas for multicolor Ca 2+ imaging in combination with other optogenetic indicators and actuators.
BackgroundGenetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores.ResultsHere we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo.ConclusionK-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-018-0480-0) contains supplementary material, which is available to authorized users.
Directed evolution has revolutionized biomolecular engineering by applying cycles of mutation, amplification and selection to genes of interest (GOIs). However, classical directed evolution methods that rely on manually staged evolutionary cycles constrain the scale and depth of the evolutionary search that is possible. We describe genetic systems that achieve cycles of rapid mutation, amplification and selection fully inside living cells, enabling the continuous evolution of GOIs as cells grow. These systems advance the scale, evolutionary search depth, ease and overall power of directed evolution and access important new areas of protein evolution and engineering.
For over 20 years, genetically encoded Ca 2þ indicators have illuminated dynamic Ca 2þ signaling activity in living cells and, more recently, whole organisms. We are just now beginning to understand how they work. Various fluorescence colors of these indicators have been developed, including red. Red ones are promising because longer wavelengths of light scatter less in tissue, making it possible to image deeper. They are engineered from a red fluorescent protein that is circularly permuted and fused to a Ca 2þ -sensing domain. When Ca 2þ binds, a conformational change in the sensing domain causes a change in fluorescence. Three factors can contribute to this fluorescence change: 1) a shift in the protonation equilibrium of the chromophore, 2) a change in fluorescence quantum yield, and 3) a change in the extinction coefficient or the two-photon cross section, depending on if it is excited with one or two photons. Here, we conduct a systematic study of the photophysical properties of a range of red Ca 2þ indicators to determine which factors are the most important. In total, we analyzed nine indicators, including jRGECO1a, K-GECO1, jRCaMP1a, R-GECO1, R-GECO1.2, CAR-GECO1, O-GECO1, REX-GECO1, and a new variant termed jREX-GECO1. We find that these could be separated into three classes that each rely on a particular set of factors. Furthermore, in some cases, the magnitude of the change in fluorescence was larger with two-photon excitation compared to one-photon because of a change in the two-photon cross section, by up to a factor of two. a Excitable form of the chromophore, anionic (A) or neutral (N). b Estimated relative SD. cThe F n maximal ratios were measured directly by taking the ratio of total fluorescence signals normalized to the known relative protein concentration between the Ca 2þ -free and Ca 2þ -saturated samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.