Background and Aims Endoparasitic root-knot nematodes (RKNs) (Meloidogyne spp.) cause considerable losses in banana (Musa spp.), with Meloidogyne incognita a predominant species in Cavendish sub-group bananas. This study investigates the root transcriptome in Musa acuminata genotypes 4297-06 (AA) and Cavendish Grande Naine (CAV; AAA) during early compatible interactions with M. incognita.Methods Roots were analysed by brightfield light microscopy over a 35 d period to examine nematode penetration and morphological cell transformation. RNA samples were extracted 3, 7 and 10 days after inoculation (DAI) with nematode J2 juveniles, and cDNA libraries were sequenced using lllumina HiSeq technology. Sequences were mapped to the M. acuminata ssp. malaccensis var. Pahang genome sequence, differentially expressed genes (DEGs) identified and transcript representation determined by gene set enrichment and pathway mapping.Key Results Microscopic analysis revealed a life cycle of M. incognita completing in 24 d in CAV and 27 d in 4279-06. Comparable numbers of DEGs were up-and downregulated in each genotype, with potential involvement of many in early host defence responses involving reactive oxygen species and jasmonate/ethylene signalling. DEGs revealed concomitant auxin metabolism and cell wall modification processes likely to be involved in giant cell formation. Notable transcripts related to host defence included those coding for leucine-rich repeat receptorlike serine/threonine-protein kinases, peroxidases, thaumatin-like pathogenesis-related proteins, and DREB, ERF, MYB, NAC and WRKY transcription factors. Transcripts related to giant cell development included indole acetic acid-amido synthetase GH3.8 genes, involved in auxin metabolism, as well as genes encoding expansins and hydrolases, involved in cell wall modification.Conclusions Expression analysis in M. acuminata during compatible interactions with RKNs provides insights into genes modulated during infection and giant cell formation. Increased understanding of both defence responses to limit parasitism during compatible interactions and effector-targeted host genes in this complex interaction will facilitate the development of genetic improvement measures for RKNs.
Vulvovaginal candidiasis (VVC), considered the second cause of genital infection among women, has pathogenic mechanisms still to be elucidated and unknown risk factors. Prevalence studies with laboratory diagnosis (at first diagnosis and recurrence) are uncommon, especially using MALDI TOF, used in this clinical, epidemiological, and laboratory study for evaluating candidiasis, and identifying unknown risk factors. To obtain clinical and epidemiological data, patients were questioned, and there was material collection. Samples collected were identified by using phenotypic and presumptive methods and confirmed by MALDI TOF. This study analyzed 278 patients, divided into symptomatic (n = 173) and asymptomatic (n = 105) groups. Regarding the main candidiasis symptoms (discharge, itching, and burning), only 50.3% of patients described these concomitant symptoms, showing a positive predictive value of 67.8%. Regarding the risk factors investigated, there was a statistical correlation between candidiasis and dairy products, gut transit, contraceptive use, respiratory allergy, and panty liners, describing new risk factors related to intestinal and vaginal dysbiosis. After Candida species analysis and confirmation, the primary prevalence was 80.9% (Candida albicans), 15.2% (non-albicans), 1% (Rhodotorula mucilaginosa), and 1.9% (unidentified species). In recurrence, the prevalence was 66.7% (C. albicans) and 33.3% (non-albicans). The presence of symptoms has low positive predictive value for the diagnosis of candidiasis, even when considering the classic triad of symptoms. Laboratory identification of yeast species is essential for correct treatment, preventing the resistance to antifungals and the high recurrence. In addition, dairy products and bowel habits, both related to intestinal and vaginal dysbiosis, may be associated with VVC.
Background Vulvovaginal candidiasis (VVC), the second leading cause of genital infection in women of reproductive age, is caused by yeasts of the genus Candida. Treatment is usually empirical and performed with azoles, which have shown increasing ineffectiveness due to resistance from these species. This therapeutic challenge has led to the search for new treatment strategies. Lactobacillus spp. produce several components with microbicidal effects, such as lactic acid. These species are the main components of a healthy vaginal microbiota and have been used as probiotics. The aim of this work was to investigate the in vitro inhibitory effects of Lactobacillus casei Shirota on both the Candida spp. that cause VVC and on C. auris. Methods The microbicidal effects of L. casei Shirota on the main VVC-causing species, C. albicans, C. tropicalis, C. norvegensis and C. parapsilosis, in addition to C. auris were investigated by counting the Colony-forming Units (CFUs) after cocultivation. The antifungal activity of lactic acid against these Candida strains was assessed using the microtiter broth dilution method to determine the minimum inhibitory concentrations (MICs). The effects of L. casei Shirota on hyphal and early biofilm formation was measured by optical microscopy. Results L. casei Shirota showed inhibitory action against all tested Candida spp., ranging from 66.9 to 95.6% inhibition depending on the species. This inhibition is possibly related to the production of lactic acid, since lactic acid has shown microbicidal action against these same Candida spp. at a concentration of 5 mg/mL, which corresponds to half of the normal physiological concentration. In addition, L. casei Shirota was able to reduce the formation of C. albicans hyphae and early biofilms, showing strong anti-Candida effects. Conclusions These results suggest that L. casei Shirota has antifungal activity against the Candida species that cause VVC. L. casei also has microbicidal action against C. auris.
Multienzymatic complexes with plant lignocellulose-degrading activities have recently been identified in filamentous fungi secretomes. Such complexes have potential biotechnological applications in the degradation of agro-industrial residues. Fungal species from the Clonostachys genus have been intensively investigated as biocontrol agents; however so far their use as producers of lignocellulose-degrading enzymes has not been extensively explored. Secretomes of Clonostachys byssicola following growth on different carbon sources (passion fruit peel, soybean hulls, cotton gin trash, banana stalk, sugarcane bagasse, orange peel, and a composition of soybean hulls: cotton gin trash:orange peel) were subjected to enzymatic assays. Remarkable differences were observed among the samples, especially regarding levels of mannanase and pectinase activities. Secretomes were then subjected to Blue Native PAGE in order to resolve putative protein complexes which subsequently had their composition revealed by trypsin digestion followed by LC-MS/MS analysis. The protein bands (named I, II, III and IV) were shown to be composed by holocellulolytic enzymes, mainly cellulases and xylanases as well as proteins involved in biocontrol processes, such as chitinases and proteases. The high diversity of proteins found in these multicatalytic assemblies confirms C. byssicola as a novel source of plant biomass-degrading enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.